Antti Löppönen, Laura Karavirta, Taija Finni, Lotta Palmberg, Erja Portegijs, Taina Rantanen, Christophe Delecluse, Evelien VAN Roie, Timo Rantalainen
{"title":"预测老年人下肢功能衰退的自由生活坐立特征","authors":"Antti Löppönen, Laura Karavirta, Taija Finni, Lotta Palmberg, Erja Portegijs, Taina Rantanen, Christophe Delecluse, Evelien VAN Roie, Timo Rantalainen","doi":"10.1249/MSS.0000000000003470","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Habitual strength and power-demanding activities of daily life may support the maintenance of adequate lower extremity functioning with aging, but this has been sparingly explored. Hence, we examined whether the characteristics of free-living sit-to-stand (STS) transitions predict a decline in lower extremity functioning over a 4-yr follow-up.</p><p><strong>Methods: </strong>A total of 340 community-dwelling older adults (60% women; age 75, 80, or 85 yr) participated in this prospective cohort study. At baseline, a thigh-worn accelerometer was used continuously (3-7 d) to monitor the number and intensity of free-living STS transitions. A decline in lower extremity functioning was defined as a drop of ≥2 points in the Short Physical Performance Battery (SPPB) from baseline to follow-up. Maximal isometric knee extension strength was measured in the laboratory.</p><p><strong>Results: </strong>Eighty-five participants (75% women) declined in SPPB over 4 yr. After adjusting for age, sex, and baseline SPPB points, higher free-living peak STS angular velocity (odds ratio (OR), 0.70; 95% confidence interval (CI), 0.52-0.92, per 20°·s -1 increase) protected against a future decline. When adjusting the model for maximal isometric knee extension strength, the statistical significance was attenuated (OR = 0.72; 95% CI = 0.54-0.96, per 20°·s -1 increase).</p><p><strong>Conclusions: </strong>Performing STS transitions at higher velocities in the free-living environment can prevent a future decline in lower extremity function. This indicates that changes in daily STS behavior may be useful in the early identification of functional loss. Free-living peak STS angular velocity may be a factor underlying the longitudinal association of lower extremity strength and performance.</p>","PeriodicalId":18426,"journal":{"name":"Medicine and Science in Sports and Exercise","volume":" ","pages":"1672-1677"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462911/pdf/","citationCount":"0","resultStr":"{\"title\":\"Free-Living Sit-to-Stand Characteristics as Predictors of Lower Extremity Functional Decline among Older Adults.\",\"authors\":\"Antti Löppönen, Laura Karavirta, Taija Finni, Lotta Palmberg, Erja Portegijs, Taina Rantanen, Christophe Delecluse, Evelien VAN Roie, Timo Rantalainen\",\"doi\":\"10.1249/MSS.0000000000003470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Habitual strength and power-demanding activities of daily life may support the maintenance of adequate lower extremity functioning with aging, but this has been sparingly explored. Hence, we examined whether the characteristics of free-living sit-to-stand (STS) transitions predict a decline in lower extremity functioning over a 4-yr follow-up.</p><p><strong>Methods: </strong>A total of 340 community-dwelling older adults (60% women; age 75, 80, or 85 yr) participated in this prospective cohort study. At baseline, a thigh-worn accelerometer was used continuously (3-7 d) to monitor the number and intensity of free-living STS transitions. A decline in lower extremity functioning was defined as a drop of ≥2 points in the Short Physical Performance Battery (SPPB) from baseline to follow-up. Maximal isometric knee extension strength was measured in the laboratory.</p><p><strong>Results: </strong>Eighty-five participants (75% women) declined in SPPB over 4 yr. After adjusting for age, sex, and baseline SPPB points, higher free-living peak STS angular velocity (odds ratio (OR), 0.70; 95% confidence interval (CI), 0.52-0.92, per 20°·s -1 increase) protected against a future decline. When adjusting the model for maximal isometric knee extension strength, the statistical significance was attenuated (OR = 0.72; 95% CI = 0.54-0.96, per 20°·s -1 increase).</p><p><strong>Conclusions: </strong>Performing STS transitions at higher velocities in the free-living environment can prevent a future decline in lower extremity function. This indicates that changes in daily STS behavior may be useful in the early identification of functional loss. Free-living peak STS angular velocity may be a factor underlying the longitudinal association of lower extremity strength and performance.</p>\",\"PeriodicalId\":18426,\"journal\":{\"name\":\"Medicine and Science in Sports and Exercise\",\"volume\":\" \",\"pages\":\"1672-1677\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462911/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicine and Science in Sports and Exercise\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1249/MSS.0000000000003470\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine and Science in Sports and Exercise","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1249/MSS.0000000000003470","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
Free-Living Sit-to-Stand Characteristics as Predictors of Lower Extremity Functional Decline among Older Adults.
Purpose: Habitual strength and power-demanding activities of daily life may support the maintenance of adequate lower extremity functioning with aging, but this has been sparingly explored. Hence, we examined whether the characteristics of free-living sit-to-stand (STS) transitions predict a decline in lower extremity functioning over a 4-yr follow-up.
Methods: A total of 340 community-dwelling older adults (60% women; age 75, 80, or 85 yr) participated in this prospective cohort study. At baseline, a thigh-worn accelerometer was used continuously (3-7 d) to monitor the number and intensity of free-living STS transitions. A decline in lower extremity functioning was defined as a drop of ≥2 points in the Short Physical Performance Battery (SPPB) from baseline to follow-up. Maximal isometric knee extension strength was measured in the laboratory.
Results: Eighty-five participants (75% women) declined in SPPB over 4 yr. After adjusting for age, sex, and baseline SPPB points, higher free-living peak STS angular velocity (odds ratio (OR), 0.70; 95% confidence interval (CI), 0.52-0.92, per 20°·s -1 increase) protected against a future decline. When adjusting the model for maximal isometric knee extension strength, the statistical significance was attenuated (OR = 0.72; 95% CI = 0.54-0.96, per 20°·s -1 increase).
Conclusions: Performing STS transitions at higher velocities in the free-living environment can prevent a future decline in lower extremity function. This indicates that changes in daily STS behavior may be useful in the early identification of functional loss. Free-living peak STS angular velocity may be a factor underlying the longitudinal association of lower extremity strength and performance.
期刊介绍:
Medicine & Science in Sports & Exercise® features original investigations, clinical studies, and comprehensive reviews on current topics in sports medicine and exercise science. With this leading multidisciplinary journal, exercise physiologists, physiatrists, physical therapists, team physicians, and athletic trainers get a vital exchange of information from basic and applied science, medicine, education, and allied health fields.