高盐饮食会诱发认知障碍,并与 IGF1R/mTOR/p70S6K 信号的激活有关。

IF 3.2 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Metabolic brain disease Pub Date : 2024-06-01 Epub Date: 2024-05-21 DOI:10.1007/s11011-024-01358-z
Shu Liu, Xu Yang, Minghao Yuan, Shengyuan Wang, Haixia Fan, Qian Zou, Yinshuang Pu, Zhiyou Cai
{"title":"高盐饮食会诱发认知障碍,并与 IGF1R/mTOR/p70S6K 信号的激活有关。","authors":"Shu Liu, Xu Yang, Minghao Yuan, Shengyuan Wang, Haixia Fan, Qian Zou, Yinshuang Pu, Zhiyou Cai","doi":"10.1007/s11011-024-01358-z","DOIUrl":null,"url":null,"abstract":"<p><p>A high-salt diet (HSD) has been associated with various health issues, including hypertension and cardiovascular diseases. However, recent studies have revealed a potential link between high salt intake and cognitive impairment. This study aims to investigate the effects of high salt intake on autophagy, tau protein hyperphosphorylation, and synaptic function and their potential associations with cognitive impairment. To explore these mechanisms, 8-month-old male C57BL/6 mice were fed either a normal diet (0.4% NaCl) or an HSD (8% NaCl) for 3 months, and Neuro-2a cells were incubated with normal medium or NaCl medium (80 mM). Behavioral tests revealed learning and memory deficits in mice fed the HSD. We further discovered that the HSD decreased autophagy, as indicated by diminished levels of the autophagy-associated proteins Beclin-1 and LC3, along with an elevated p62 protein level. HSD feeding significantly decreased insulin-like growth factor-1 receptor (IGF1R) expression in the brain of C57BL/6 mice and activated mechanistic target of rapamycin (mTOR) signaling. In addition, the HSD reduced synaptophysin and postsynaptic density protein 95 (PSD95) expression in the hippocampus and caused synaptic loss in mice. We also found amyloid β accumulation and hyperphosphorylation of tau protein at different loci both in vivo and in vitro. Overall, this study highlights the clinical significance of understanding the impact of an HSD on cognitive function. By targeting the IGF1R/mTOR/p70S6K pathway or promoting autophagy, it may be possible to mitigate the negative effects of high salt intake on cognitive function.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High salt diet induces cognitive impairment and is linked to the activation of IGF1R/mTOR/p70S6K signaling.\",\"authors\":\"Shu Liu, Xu Yang, Minghao Yuan, Shengyuan Wang, Haixia Fan, Qian Zou, Yinshuang Pu, Zhiyou Cai\",\"doi\":\"10.1007/s11011-024-01358-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A high-salt diet (HSD) has been associated with various health issues, including hypertension and cardiovascular diseases. However, recent studies have revealed a potential link between high salt intake and cognitive impairment. This study aims to investigate the effects of high salt intake on autophagy, tau protein hyperphosphorylation, and synaptic function and their potential associations with cognitive impairment. To explore these mechanisms, 8-month-old male C57BL/6 mice were fed either a normal diet (0.4% NaCl) or an HSD (8% NaCl) for 3 months, and Neuro-2a cells were incubated with normal medium or NaCl medium (80 mM). Behavioral tests revealed learning and memory deficits in mice fed the HSD. We further discovered that the HSD decreased autophagy, as indicated by diminished levels of the autophagy-associated proteins Beclin-1 and LC3, along with an elevated p62 protein level. HSD feeding significantly decreased insulin-like growth factor-1 receptor (IGF1R) expression in the brain of C57BL/6 mice and activated mechanistic target of rapamycin (mTOR) signaling. In addition, the HSD reduced synaptophysin and postsynaptic density protein 95 (PSD95) expression in the hippocampus and caused synaptic loss in mice. We also found amyloid β accumulation and hyperphosphorylation of tau protein at different loci both in vivo and in vitro. Overall, this study highlights the clinical significance of understanding the impact of an HSD on cognitive function. By targeting the IGF1R/mTOR/p70S6K pathway or promoting autophagy, it may be possible to mitigate the negative effects of high salt intake on cognitive function.</p>\",\"PeriodicalId\":18685,\"journal\":{\"name\":\"Metabolic brain disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic brain disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11011-024-01358-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-024-01358-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

高盐饮食(HSD)与各种健康问题有关,包括高血压和心血管疾病。然而,最近的研究揭示了高盐摄入与认知障碍之间的潜在联系。本研究旨在探讨高盐摄入对自噬、tau蛋白过度磷酸化和突触功能的影响及其与认知障碍的潜在联系。为了探索这些机制,研究人员给 8 个月大的雄性 C57BL/6 小鼠喂食正常饮食(0.4% NaCl)或 HSD(8% NaCl)3 个月,并用正常培养基或 NaCl 培养基(80 mM)培养 Neuro-2a 细胞。行为测试显示,喂食 HSD 的小鼠存在学习和记忆缺陷。我们进一步发现,HSD 会降低自噬能力,表现为自噬相关蛋白 Beclin-1 和 LC3 水平降低,p62 蛋白水平升高。摄入 HSD 会明显降低 C57BL/6 小鼠大脑中胰岛素样生长因子-1 受体(IGF1R)的表达,并激活雷帕霉素机制靶标(mTOR)信号传导。此外,HSD 还降低了海马中突触素和突触后密度蛋白 95(PSD95)的表达,并导致小鼠突触缺失。我们还在体内和体外的不同位点发现了淀粉样蛋白 β 的积累和 tau 蛋白的过度磷酸化。总之,这项研究强调了了解 HSD 对认知功能影响的临床意义。通过靶向 IGF1R/mTOR/p70S6K 通路或促进自噬,或许可以减轻高盐摄入对认知功能的负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High salt diet induces cognitive impairment and is linked to the activation of IGF1R/mTOR/p70S6K signaling.

High salt diet induces cognitive impairment and is linked to the activation of IGF1R/mTOR/p70S6K signaling.

A high-salt diet (HSD) has been associated with various health issues, including hypertension and cardiovascular diseases. However, recent studies have revealed a potential link between high salt intake and cognitive impairment. This study aims to investigate the effects of high salt intake on autophagy, tau protein hyperphosphorylation, and synaptic function and their potential associations with cognitive impairment. To explore these mechanisms, 8-month-old male C57BL/6 mice were fed either a normal diet (0.4% NaCl) or an HSD (8% NaCl) for 3 months, and Neuro-2a cells were incubated with normal medium or NaCl medium (80 mM). Behavioral tests revealed learning and memory deficits in mice fed the HSD. We further discovered that the HSD decreased autophagy, as indicated by diminished levels of the autophagy-associated proteins Beclin-1 and LC3, along with an elevated p62 protein level. HSD feeding significantly decreased insulin-like growth factor-1 receptor (IGF1R) expression in the brain of C57BL/6 mice and activated mechanistic target of rapamycin (mTOR) signaling. In addition, the HSD reduced synaptophysin and postsynaptic density protein 95 (PSD95) expression in the hippocampus and caused synaptic loss in mice. We also found amyloid β accumulation and hyperphosphorylation of tau protein at different loci both in vivo and in vitro. Overall, this study highlights the clinical significance of understanding the impact of an HSD on cognitive function. By targeting the IGF1R/mTOR/p70S6K pathway or promoting autophagy, it may be possible to mitigate the negative effects of high salt intake on cognitive function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolic brain disease
Metabolic brain disease 医学-内分泌学与代谢
CiteScore
5.90
自引率
5.60%
发文量
248
审稿时长
6-12 weeks
期刊介绍: Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信