二氧化钛纳米颗粒通过抑制典型的 NF-κB 通路对 2,4,6- 三硝基苯磺酸 (TNBS) 诱导的结肠炎的潜在缓解作用。

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Yanjun Gao , Langzhi He , Shumin Duan , Hasen Bilige , Lizhi Lyu , Zihui Li , Hongbo Wang , Chen Li , Yun Wang
{"title":"二氧化钛纳米颗粒通过抑制典型的 NF-κB 通路对 2,4,6- 三硝基苯磺酸 (TNBS) 诱导的结肠炎的潜在缓解作用。","authors":"Yanjun Gao ,&nbsp;Langzhi He ,&nbsp;Shumin Duan ,&nbsp;Hasen Bilige ,&nbsp;Lizhi Lyu ,&nbsp;Zihui Li ,&nbsp;Hongbo Wang ,&nbsp;Chen Li ,&nbsp;Yun Wang","doi":"10.1016/j.impact.2024.100512","DOIUrl":null,"url":null,"abstract":"<div><p>Titanium dioxide nanoparticles (TiO<sub>2</sub> NPs) have been widely employed in various industry fields, which makes consumers concerned about their health impact. Our previous work displayed that TiO<sub>2</sub> NPs participated in the mitigation of TNBS-induced colitis, but the mechanism is still unknown. This work aimed to explore the role of oxidative stress and NF-κB pathway in the effect of TiO<sub>2</sub> NPs on TNBS-induced colitis. The results showed that TiO<sub>2</sub> NPs administration reduced the DAI score of colitis mice after TNBS enema. TiO<sub>2</sub> NPs did not alter oxidative stress status (GSH/GSSG), but repaired the gut dysbacteriosis and inhibited the canonical NF-κB pathway activation in TNBS-induced colitis mice, manifested as a decrease in pathogenic bacteria and an increase in beneficial bacteria, as well as down-regulation of toll-like receptors (TLRs), IKKα, IKKβ, p65 and pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and IFN-γ) in mRNA level, and the increased transcription of anti-inflammatory cytokines (IL-10, TGF-β, and IL-12), along with the declined protein level of TNF-α in TiO<sub>2</sub> NPs treated colitis mice. The present study suggested that oral TiO<sub>2</sub> NPs administration inhibited the canonical NF-κB pathway activation by repairing gut dysbacteriosis, which made a predominant role in alleviating colitis. These findings provided a new perspective for exploring the safety of TiO<sub>2</sub> NPs.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential mitigation of titanium dioxide nanoparticles against 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis through inhibiting the canonical NF-κB pathway\",\"authors\":\"Yanjun Gao ,&nbsp;Langzhi He ,&nbsp;Shumin Duan ,&nbsp;Hasen Bilige ,&nbsp;Lizhi Lyu ,&nbsp;Zihui Li ,&nbsp;Hongbo Wang ,&nbsp;Chen Li ,&nbsp;Yun Wang\",\"doi\":\"10.1016/j.impact.2024.100512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Titanium dioxide nanoparticles (TiO<sub>2</sub> NPs) have been widely employed in various industry fields, which makes consumers concerned about their health impact. Our previous work displayed that TiO<sub>2</sub> NPs participated in the mitigation of TNBS-induced colitis, but the mechanism is still unknown. This work aimed to explore the role of oxidative stress and NF-κB pathway in the effect of TiO<sub>2</sub> NPs on TNBS-induced colitis. The results showed that TiO<sub>2</sub> NPs administration reduced the DAI score of colitis mice after TNBS enema. TiO<sub>2</sub> NPs did not alter oxidative stress status (GSH/GSSG), but repaired the gut dysbacteriosis and inhibited the canonical NF-κB pathway activation in TNBS-induced colitis mice, manifested as a decrease in pathogenic bacteria and an increase in beneficial bacteria, as well as down-regulation of toll-like receptors (TLRs), IKKα, IKKβ, p65 and pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and IFN-γ) in mRNA level, and the increased transcription of anti-inflammatory cytokines (IL-10, TGF-β, and IL-12), along with the declined protein level of TNF-α in TiO<sub>2</sub> NPs treated colitis mice. The present study suggested that oral TiO<sub>2</sub> NPs administration inhibited the canonical NF-κB pathway activation by repairing gut dysbacteriosis, which made a predominant role in alleviating colitis. These findings provided a new perspective for exploring the safety of TiO<sub>2</sub> NPs.</p></div>\",\"PeriodicalId\":18786,\"journal\":{\"name\":\"NanoImpact\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NanoImpact\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452074824000223\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074824000223","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

二氧化钛纳米粒子(TiO2 NPs)已被广泛应用于各种工业领域,这使得消费者对其对健康的影响感到担忧。我们之前的研究表明,TiO2 NPs 参与了 TNBS 诱导的结肠炎的缓解,但其机制尚不清楚。本研究旨在探讨氧化应激和NF-κB通路在TiO2 NPs影响TNBS诱导的结肠炎中的作用。结果表明,TiO2 NPs能降低TNBS灌肠后结肠炎小鼠的DAI评分。TiO2 NPs没有改变氧化应激状态(GSH/GSSG),但修复了肠道菌群失调,抑制了TNBS诱导的结肠炎小鼠的典型NF-κB通路激活,表现为致病菌减少,有益菌增加,以及Toll样受体(TLRs)下调、IKKα、IKKβ、p65 和促炎细胞因子(IL-1β、IL-6、TNF-α 和 IFN-γ)的 mRNA 水平下调,抗炎细胞因子(IL-10、TGF-β 和 IL-12)的转录增加,TNF-α 蛋白水平下降。本研究表明,口服TiO2 NPs可通过修复肠道菌群失调抑制典型NF-κB通路的激活,从而在缓解结肠炎方面发挥主导作用。这些发现为探索二氧化钛纳米粒子的安全性提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential mitigation of titanium dioxide nanoparticles against 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis through inhibiting the canonical NF-κB pathway

Titanium dioxide nanoparticles (TiO2 NPs) have been widely employed in various industry fields, which makes consumers concerned about their health impact. Our previous work displayed that TiO2 NPs participated in the mitigation of TNBS-induced colitis, but the mechanism is still unknown. This work aimed to explore the role of oxidative stress and NF-κB pathway in the effect of TiO2 NPs on TNBS-induced colitis. The results showed that TiO2 NPs administration reduced the DAI score of colitis mice after TNBS enema. TiO2 NPs did not alter oxidative stress status (GSH/GSSG), but repaired the gut dysbacteriosis and inhibited the canonical NF-κB pathway activation in TNBS-induced colitis mice, manifested as a decrease in pathogenic bacteria and an increase in beneficial bacteria, as well as down-regulation of toll-like receptors (TLRs), IKKα, IKKβ, p65 and pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and IFN-γ) in mRNA level, and the increased transcription of anti-inflammatory cytokines (IL-10, TGF-β, and IL-12), along with the declined protein level of TNF-α in TiO2 NPs treated colitis mice. The present study suggested that oral TiO2 NPs administration inhibited the canonical NF-κB pathway activation by repairing gut dysbacteriosis, which made a predominant role in alleviating colitis. These findings provided a new perspective for exploring the safety of TiO2 NPs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NanoImpact
NanoImpact Social Sciences-Safety Research
CiteScore
11.00
自引率
6.10%
发文量
69
审稿时长
23 days
期刊介绍: NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信