Sejal S Shah, Bhavika P. Turakhia, Nihar Purohit, Khushal M. Kapadiya, Chita R. Sahoo, Akhilesh Prajapati
{"title":"氧化铁纳米粒子的简便绿色合成及其对细胞毒性、抗氧化性和杀菌活性的影响","authors":"Sejal S Shah, Bhavika P. Turakhia, Nihar Purohit, Khushal M. Kapadiya, Chita R. Sahoo, Akhilesh Prajapati","doi":"10.61186/ibj.4061","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bioreductive processes are quite potent, effective and affordable for the synthesis of green nanoparticles (NPs), as compared to the physical and chemical methods. The present study aimed to evaluate the bactericidal, antioxidative and anticancer activity of turmeric rhizome-iron oxide nanoparticles (FeONPs) derived from the turmeric rhizome (Curcuma amada) using ferric chloride as a precursor.</p><p><strong>Methods: </strong>With focusing on the manufacture of FeONPs via green approach, we characterized the NPs using FTIR, FT-Vis, DLS, and UV-Vis spectroscopy. The produced particles were tested for antibacterial, antioxidant, and anticancer properties. The synthesized NPs were also examined using the MDA-MB-231 human epithelial breast cancer cell line and NCI-60 cancer cell lines.</p><p><strong>Results: </strong>The antioxidant activity of TR-FeONPs was concentration-dependent. The scavenging activity of TR-FeONPs was 76.09% at a concentration of 140 µg/ml. Using different concentrations of TR-FeONPs in the MTT assay against the MDA-MB-231 cell line indicated a reduction of less than 50% in cell viability at 125 µg/ml. Moreover, TR-FeONPs exhibited an effective bactericidal property. The gTR-FeONPs synthesized bioreductively were found to be effective in renal cancer, UO-31 cell line, with GI50 value of 66.64%.</p><p><strong>Conclusion: </strong>Our study showcases a sustainable method based on green chemistry principles to produce FeONPs utilizing turmeric rhizome. We anticipate that the FeONPs produced through this biosynthesis process could serve as a promising drug delivery system in cancer treatment and as an effective antimicrobial agent against various diseases.</p>","PeriodicalId":14500,"journal":{"name":"Iranian Biomedical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186612/pdf/","citationCount":"0","resultStr":"{\"title\":\"Facile Green Synthesis of Iron Oxide Nanoparticles and Their Impact on Cytotoxicity, Antioxidative Properties and Bactericidal Activity.\",\"authors\":\"Sejal S Shah, Bhavika P. Turakhia, Nihar Purohit, Khushal M. Kapadiya, Chita R. Sahoo, Akhilesh Prajapati\",\"doi\":\"10.61186/ibj.4061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Bioreductive processes are quite potent, effective and affordable for the synthesis of green nanoparticles (NPs), as compared to the physical and chemical methods. The present study aimed to evaluate the bactericidal, antioxidative and anticancer activity of turmeric rhizome-iron oxide nanoparticles (FeONPs) derived from the turmeric rhizome (Curcuma amada) using ferric chloride as a precursor.</p><p><strong>Methods: </strong>With focusing on the manufacture of FeONPs via green approach, we characterized the NPs using FTIR, FT-Vis, DLS, and UV-Vis spectroscopy. The produced particles were tested for antibacterial, antioxidant, and anticancer properties. The synthesized NPs were also examined using the MDA-MB-231 human epithelial breast cancer cell line and NCI-60 cancer cell lines.</p><p><strong>Results: </strong>The antioxidant activity of TR-FeONPs was concentration-dependent. The scavenging activity of TR-FeONPs was 76.09% at a concentration of 140 µg/ml. Using different concentrations of TR-FeONPs in the MTT assay against the MDA-MB-231 cell line indicated a reduction of less than 50% in cell viability at 125 µg/ml. Moreover, TR-FeONPs exhibited an effective bactericidal property. The gTR-FeONPs synthesized bioreductively were found to be effective in renal cancer, UO-31 cell line, with GI50 value of 66.64%.</p><p><strong>Conclusion: </strong>Our study showcases a sustainable method based on green chemistry principles to produce FeONPs utilizing turmeric rhizome. We anticipate that the FeONPs produced through this biosynthesis process could serve as a promising drug delivery system in cancer treatment and as an effective antimicrobial agent against various diseases.</p>\",\"PeriodicalId\":14500,\"journal\":{\"name\":\"Iranian Biomedical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186612/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Biomedical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61186/ibj.4061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Biomedical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61186/ibj.4061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Facile Green Synthesis of Iron Oxide Nanoparticles and Their Impact on Cytotoxicity, Antioxidative Properties and Bactericidal Activity.
Background: Bioreductive processes are quite potent, effective and affordable for the synthesis of green nanoparticles (NPs), as compared to the physical and chemical methods. The present study aimed to evaluate the bactericidal, antioxidative and anticancer activity of turmeric rhizome-iron oxide nanoparticles (FeONPs) derived from the turmeric rhizome (Curcuma amada) using ferric chloride as a precursor.
Methods: With focusing on the manufacture of FeONPs via green approach, we characterized the NPs using FTIR, FT-Vis, DLS, and UV-Vis spectroscopy. The produced particles were tested for antibacterial, antioxidant, and anticancer properties. The synthesized NPs were also examined using the MDA-MB-231 human epithelial breast cancer cell line and NCI-60 cancer cell lines.
Results: The antioxidant activity of TR-FeONPs was concentration-dependent. The scavenging activity of TR-FeONPs was 76.09% at a concentration of 140 µg/ml. Using different concentrations of TR-FeONPs in the MTT assay against the MDA-MB-231 cell line indicated a reduction of less than 50% in cell viability at 125 µg/ml. Moreover, TR-FeONPs exhibited an effective bactericidal property. The gTR-FeONPs synthesized bioreductively were found to be effective in renal cancer, UO-31 cell line, with GI50 value of 66.64%.
Conclusion: Our study showcases a sustainable method based on green chemistry principles to produce FeONPs utilizing turmeric rhizome. We anticipate that the FeONPs produced through this biosynthesis process could serve as a promising drug delivery system in cancer treatment and as an effective antimicrobial agent against various diseases.