{"title":"利用 LC-MS 方法分析海洋肺癌候选药物 N-hydap 的代谢特征和毒性。","authors":"Jindi Lu, Weimin Liang, Yiwei Hu, Xi Zhang, Ping Yu, Meiqun Cai, Danni Xie, Qiong Zhou, Xuefeng Zhou, Yonghong Liu, Junfeng Wang, Jiayin Guo, Lan Tang","doi":"10.1007/s13659-024-00455-x","DOIUrl":null,"url":null,"abstract":"<div><p><i>N</i>-Hydroxyapiosporamide (<i>N</i>-hydap), a marine product derived from a sponge-associated fungus, has shown promising inhibitory effects on small cell lung cancer (SCLC). However, there is limited understanding of its metabolic pathways and characteristics. This study explored the in vitro metabolic profiles of <i>N</i>-hydap in human recombinant cytochrome P450s (CYPs) and UDP-glucuronosyltransferases (UGTs), as well as human/rat/mice microsomes, and also the pharmacokinetic properties by HPLC–MS/MS. Additionally, the cocktail probe method was used to investigate the potential to create drug-drug interactions (DDIs). <i>N</i>-Hydap was metabolically unstable in various microsomes after 1 h, with about 50% and 70% of it being eliminated by CYPs and UGTs, respectively. UGT1A3 was the main enzyme involved in glucuronidation (over 80%), making glucuronide the primary metabolite. With a favorable bioavailability of 24.0%, <i>N</i>-hydap exhibited a higher distribution in the lungs (26.26%), accounting for its efficacy against SCLC. Administering <i>N</i>-hydap to mice at normal doses via gavage did not result in significant toxicity. Furthermore, <i>N</i>-hydap was found to affect the catalytic activity of drug metabolic enzymes (DMEs), particularly increasing the activity of UGT1A3, suggesting potential for DDIs. Understanding the metabolic pathways and properties of <i>N</i>-hydap should improve our knowledge of its drug efficacy, toxicity, and potential for DDIs.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":718,"journal":{"name":"Natural Products and Bioprospecting","volume":"14 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109052/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolism characterization and toxicity of N-hydap, a marine candidate drug for lung cancer therapy by LC–MS method\",\"authors\":\"Jindi Lu, Weimin Liang, Yiwei Hu, Xi Zhang, Ping Yu, Meiqun Cai, Danni Xie, Qiong Zhou, Xuefeng Zhou, Yonghong Liu, Junfeng Wang, Jiayin Guo, Lan Tang\",\"doi\":\"10.1007/s13659-024-00455-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><i>N</i>-Hydroxyapiosporamide (<i>N</i>-hydap), a marine product derived from a sponge-associated fungus, has shown promising inhibitory effects on small cell lung cancer (SCLC). However, there is limited understanding of its metabolic pathways and characteristics. This study explored the in vitro metabolic profiles of <i>N</i>-hydap in human recombinant cytochrome P450s (CYPs) and UDP-glucuronosyltransferases (UGTs), as well as human/rat/mice microsomes, and also the pharmacokinetic properties by HPLC–MS/MS. Additionally, the cocktail probe method was used to investigate the potential to create drug-drug interactions (DDIs). <i>N</i>-Hydap was metabolically unstable in various microsomes after 1 h, with about 50% and 70% of it being eliminated by CYPs and UGTs, respectively. UGT1A3 was the main enzyme involved in glucuronidation (over 80%), making glucuronide the primary metabolite. With a favorable bioavailability of 24.0%, <i>N</i>-hydap exhibited a higher distribution in the lungs (26.26%), accounting for its efficacy against SCLC. Administering <i>N</i>-hydap to mice at normal doses via gavage did not result in significant toxicity. Furthermore, <i>N</i>-hydap was found to affect the catalytic activity of drug metabolic enzymes (DMEs), particularly increasing the activity of UGT1A3, suggesting potential for DDIs. Understanding the metabolic pathways and properties of <i>N</i>-hydap should improve our knowledge of its drug efficacy, toxicity, and potential for DDIs.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":718,\"journal\":{\"name\":\"Natural Products and Bioprospecting\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109052/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Products and Bioprospecting\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13659-024-00455-x\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Products and Bioprospecting","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13659-024-00455-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Metabolism characterization and toxicity of N-hydap, a marine candidate drug for lung cancer therapy by LC–MS method
N-Hydroxyapiosporamide (N-hydap), a marine product derived from a sponge-associated fungus, has shown promising inhibitory effects on small cell lung cancer (SCLC). However, there is limited understanding of its metabolic pathways and characteristics. This study explored the in vitro metabolic profiles of N-hydap in human recombinant cytochrome P450s (CYPs) and UDP-glucuronosyltransferases (UGTs), as well as human/rat/mice microsomes, and also the pharmacokinetic properties by HPLC–MS/MS. Additionally, the cocktail probe method was used to investigate the potential to create drug-drug interactions (DDIs). N-Hydap was metabolically unstable in various microsomes after 1 h, with about 50% and 70% of it being eliminated by CYPs and UGTs, respectively. UGT1A3 was the main enzyme involved in glucuronidation (over 80%), making glucuronide the primary metabolite. With a favorable bioavailability of 24.0%, N-hydap exhibited a higher distribution in the lungs (26.26%), accounting for its efficacy against SCLC. Administering N-hydap to mice at normal doses via gavage did not result in significant toxicity. Furthermore, N-hydap was found to affect the catalytic activity of drug metabolic enzymes (DMEs), particularly increasing the activity of UGT1A3, suggesting potential for DDIs. Understanding the metabolic pathways and properties of N-hydap should improve our knowledge of its drug efficacy, toxicity, and potential for DDIs.
期刊介绍:
Natural Products and Bioprospecting serves as an international forum for essential research on natural products and focuses on, but is not limited to, the following aspects:
Natural products: isolation and structure elucidation
Natural products: synthesis
Biological evaluation of biologically active natural products
Bioorganic and medicinal chemistry
Biosynthesis and microbiological transformation
Fermentation and plant tissue cultures
Bioprospecting of natural products from natural resources
All research articles published in this journal have undergone rigorous peer review. In addition to original research articles, Natural Products and Bioprospecting publishes reviews and short communications, aiming to rapidly disseminate the research results of timely interest, and comprehensive reviews of emerging topics in all the areas of natural products. It is also an open access journal, which provides free access to its articles to anyone, anywhere.