由毛细管驱动的自致密化技术生产的轻质、坚固、透明的木质薄膜。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-05-21 DOI:10.1002/smll.202311966
Feng Chen, Maximilian Ritter, Yifan Xu, Kunkun Tu, Sophie Marie Koch, Wenqing Yan, Huiyang Bian, Yong Ding, Jianguo Sun, Ingo Burgert
{"title":"由毛细管驱动的自致密化技术生产的轻质、坚固、透明的木质薄膜。","authors":"Feng Chen,&nbsp;Maximilian Ritter,&nbsp;Yifan Xu,&nbsp;Kunkun Tu,&nbsp;Sophie Marie Koch,&nbsp;Wenqing Yan,&nbsp;Huiyang Bian,&nbsp;Yong Ding,&nbsp;Jianguo Sun,&nbsp;Ingo Burgert","doi":"10.1002/smll.202311966","DOIUrl":null,"url":null,"abstract":"<p>Wood delignification and densification enable the production of high strength and/or transparent wood materials with exceptional properties. However, processing needs to be more sustainable and besides the chemical delignification treatments, energy intense hot-pressing calls for alternative approaches. Here, this study shows that additional softening of delignified wood via a mild swelling process using an ionic liquid-water mixture enables the densification of tube-line wood cells into layer-by-layer sheet structures without hot-pressing. The natural capillary force induces self-densification in a simple drying process resulting in a transparent wood film. The as-prepared films with ≈150 µm thickness possess an optical transmittance ≈70%, while maintaining optical haze &gt;95%. Due to the densely packed sheet structure with a large interfacial area, the reassembled wood film is fivefold stronger and stiffer than the delignified wood in fiber direction. Owing to a low density, the specific tensile strength and elastic modulus are as high as 282 MPa cm<sup>3</sup> g<sup>−1</sup> and 31 GPa cm<sup>3</sup> g<sup>−1</sup>. A facile and highly energy efficient wood nanotechnology approach are demonstrated toward more sustainable materials and processes by directly converting delignified wood into transparent wood omitting polymeric matrix infiltration or mechanical pressing.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"20 38","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight, Strong, and Transparent Wood Films Produced by Capillary Driven Self-Densification\",\"authors\":\"Feng Chen,&nbsp;Maximilian Ritter,&nbsp;Yifan Xu,&nbsp;Kunkun Tu,&nbsp;Sophie Marie Koch,&nbsp;Wenqing Yan,&nbsp;Huiyang Bian,&nbsp;Yong Ding,&nbsp;Jianguo Sun,&nbsp;Ingo Burgert\",\"doi\":\"10.1002/smll.202311966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wood delignification and densification enable the production of high strength and/or transparent wood materials with exceptional properties. However, processing needs to be more sustainable and besides the chemical delignification treatments, energy intense hot-pressing calls for alternative approaches. Here, this study shows that additional softening of delignified wood via a mild swelling process using an ionic liquid-water mixture enables the densification of tube-line wood cells into layer-by-layer sheet structures without hot-pressing. The natural capillary force induces self-densification in a simple drying process resulting in a transparent wood film. The as-prepared films with ≈150 µm thickness possess an optical transmittance ≈70%, while maintaining optical haze &gt;95%. Due to the densely packed sheet structure with a large interfacial area, the reassembled wood film is fivefold stronger and stiffer than the delignified wood in fiber direction. Owing to a low density, the specific tensile strength and elastic modulus are as high as 282 MPa cm<sup>3</sup> g<sup>−1</sup> and 31 GPa cm<sup>3</sup> g<sup>−1</sup>. A facile and highly energy efficient wood nanotechnology approach are demonstrated toward more sustainable materials and processes by directly converting delignified wood into transparent wood omitting polymeric matrix infiltration or mechanical pressing.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"20 38\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202311966\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202311966","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

木材脱木质和致密化可以生产出具有特殊性能的高强度和/或透明木质材料。然而,加工过程需要更具可持续性,除了化学脱木素处理外,高能耗的热压工艺也需要替代方法。本研究表明,通过使用离子液体-水混合物的温和溶胀工艺对脱木质素木材进行额外软化,可使管状木材细胞致密化,形成逐层薄片结构,而无需热压。在简单的干燥过程中,天然毛细管力会诱导自致密化,从而形成透明的木膜。制备的薄膜厚度≈150 µm,光学透射率≈70%,同时光学雾度保持在 95% 以上。由于密集的片状结构和较大的界面面积,重新组装的木膜在纤维方向上的强度和刚度是去木质化木材的五倍。由于密度低,比抗拉强度和弹性模量分别高达 282 兆帕厘米3克-1 和 31 千兆帕厘米3克-1。通过直接将去木质化木材转化为透明木材,省略了聚合物基质浸润或机械压制,展示了一种简便、高能效的木材纳米技术方法,从而实现更可持续的材料和工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lightweight, Strong, and Transparent Wood Films Produced by Capillary Driven Self-Densification

Lightweight, Strong, and Transparent Wood Films Produced by Capillary Driven Self-Densification

Wood delignification and densification enable the production of high strength and/or transparent wood materials with exceptional properties. However, processing needs to be more sustainable and besides the chemical delignification treatments, energy intense hot-pressing calls for alternative approaches. Here, this study shows that additional softening of delignified wood via a mild swelling process using an ionic liquid-water mixture enables the densification of tube-line wood cells into layer-by-layer sheet structures without hot-pressing. The natural capillary force induces self-densification in a simple drying process resulting in a transparent wood film. The as-prepared films with ≈150 µm thickness possess an optical transmittance ≈70%, while maintaining optical haze >95%. Due to the densely packed sheet structure with a large interfacial area, the reassembled wood film is fivefold stronger and stiffer than the delignified wood in fiber direction. Owing to a low density, the specific tensile strength and elastic modulus are as high as 282 MPa cm3 g−1 and 31 GPa cm3 g−1. A facile and highly energy efficient wood nanotechnology approach are demonstrated toward more sustainable materials and processes by directly converting delignified wood into transparent wood omitting polymeric matrix infiltration or mechanical pressing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信