{"title":"焕发青春:通过细胞重编程逆转衰老标志。","authors":"Eleni Miliotou, Irene de Lázaro","doi":"10.1159/000539415","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>With the elderly population projected to double by 2050, there is an urgent need to address the increasing prevalence of age-related debilitating diseases and ultimately minimize discrepancies between the rising lifespan and stagnant health span. Cellular reprogramming by overexpression of Oct3/4, Klf4, Sox2, and cMyc (OKSM) transcription factors is gaining attention in this context thanks to demonstrated rejuvenating effects in human cell cultures and live mice, many of which can be uncoupled from dedifferentiation and loss of cell identity.</p><p><strong>Summary: </strong>Here, we review current evidence of the impact of cell reprogramming on established aging hallmarks and the underlying mechanisms that mediate these effects. We also provide a critical assessment of the challenges in translating these findings and, overall, cell reprogramming technologies into clinically translatable antiaging interventions.</p><p><strong>Key messages: </strong>Cellular reprogramming has the potential to reverse at least partially some key hallmarks of aging. However, further research is necessary to determine the biological significance and duration of such changes and to ensure the safety of cell reprogramming as a rejuvenation approach. With this review, we hope to stimulate new research directions in the quest to extend health span effectively.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":" ","pages":"538-550"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633886/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Youthful Touch: Reversal of Aging Hallmarks by Cell Reprogramming.\",\"authors\":\"Eleni Miliotou, Irene de Lázaro\",\"doi\":\"10.1159/000539415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>With the elderly population projected to double by 2050, there is an urgent need to address the increasing prevalence of age-related debilitating diseases and ultimately minimize discrepancies between the rising lifespan and stagnant health span. Cellular reprogramming by overexpression of Oct3/4, Klf4, Sox2, and cMyc (OKSM) transcription factors is gaining attention in this context thanks to demonstrated rejuvenating effects in human cell cultures and live mice, many of which can be uncoupled from dedifferentiation and loss of cell identity.</p><p><strong>Summary: </strong>Here, we review current evidence of the impact of cell reprogramming on established aging hallmarks and the underlying mechanisms that mediate these effects. We also provide a critical assessment of the challenges in translating these findings and, overall, cell reprogramming technologies into clinically translatable antiaging interventions.</p><p><strong>Key messages: </strong>Cellular reprogramming has the potential to reverse at least partially some key hallmarks of aging. However, further research is necessary to determine the biological significance and duration of such changes and to ensure the safety of cell reprogramming as a rejuvenation approach. With this review, we hope to stimulate new research directions in the quest to extend health span effectively.</p>\",\"PeriodicalId\":9717,\"journal\":{\"name\":\"Cells Tissues Organs\",\"volume\":\" \",\"pages\":\"538-550\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633886/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells Tissues Organs\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000539415\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells Tissues Organs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000539415","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
A Youthful Touch: Reversal of Aging Hallmarks by Cell Reprogramming.
Background: With the elderly population projected to double by 2050, there is an urgent need to address the increasing prevalence of age-related debilitating diseases and ultimately minimize discrepancies between the rising lifespan and stagnant health span. Cellular reprogramming by overexpression of Oct3/4, Klf4, Sox2, and cMyc (OKSM) transcription factors is gaining attention in this context thanks to demonstrated rejuvenating effects in human cell cultures and live mice, many of which can be uncoupled from dedifferentiation and loss of cell identity.
Summary: Here, we review current evidence of the impact of cell reprogramming on established aging hallmarks and the underlying mechanisms that mediate these effects. We also provide a critical assessment of the challenges in translating these findings and, overall, cell reprogramming technologies into clinically translatable antiaging interventions.
Key messages: Cellular reprogramming has the potential to reverse at least partially some key hallmarks of aging. However, further research is necessary to determine the biological significance and duration of such changes and to ensure the safety of cell reprogramming as a rejuvenation approach. With this review, we hope to stimulate new research directions in the quest to extend health span effectively.
期刊介绍:
''Cells Tissues Organs'' aims at bridging the gap between cell biology and developmental biology and the emerging fields of regenerative medicine (stem cell biology, tissue engineering, artificial organs, in vitro systems and transplantation biology). CTO offers a rapid and fair peer-review and exquisite reproduction quality. Special topic issues, entire issues of the journal devoted to a single research topic within the range of interests of the journal, are published at irregular intervals.