{"title":"小而相连的岛屿能在气候变化中维持种群和遗传多样性","authors":"Matthew M. Smith, Jonathan N. Pauli","doi":"10.1111/ecog.07119","DOIUrl":null,"url":null,"abstract":"<p>In response to the striking effects of environmental change, conservation strategies often include the identification of conservation areas that can effectively maintain vulnerable species. Consequently, identifying system-specific conditions that maintain the demographic and genetic viability of species of conservation concern is essential. Connectivity plays a critical role in the persistence of populations. Islands have been model systems to understand connectivity and metapopulation processes and have emerged as particularly favorable targets for conservation. While islands can be isolated from mainland disturbances, it is unknown what degree of isolation is necessary to avoid unfavorable changes but remain sufficiently connected to maintain population viability. To test this question, we explored connectivity within the Apostle Islands, an archipelago of 22 islands within Lake Superior, by comparing historical and contemporary trends in ice bridge connectivity and by simulating the effect of reduced connectivity within this system. We developed a demographically informed individual-based model to explicitly test the role of connectivity to influence the persistence and genetic diversity of American marten <i>Martes americana</i>, a forest carnivore at risk across its southern range boundary. We found that genetic diversity was resilient to moderate changes in ice cover, but a complete loss of connectivity resulted in rapid genetic erosion. Despite genetic erosion, populations persisted as long as nominal connectivity occurred between islands. Our work suggests that connectivity will decline, but martens would be resilient to moderate changes and, in the short term, the Apostle Islands can act as a refuge along this species' southern range boundary. Identifying thresholds in connectivity that maintain populations but allow for isolation from disturbance will be necessary to identify suitable areas for species conservation across space and time.</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"2024 7","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07119","citationCount":"0","resultStr":"{\"title\":\"Small but connected islands can maintain populations and genetic diversity under climate change\",\"authors\":\"Matthew M. Smith, Jonathan N. Pauli\",\"doi\":\"10.1111/ecog.07119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In response to the striking effects of environmental change, conservation strategies often include the identification of conservation areas that can effectively maintain vulnerable species. Consequently, identifying system-specific conditions that maintain the demographic and genetic viability of species of conservation concern is essential. Connectivity plays a critical role in the persistence of populations. Islands have been model systems to understand connectivity and metapopulation processes and have emerged as particularly favorable targets for conservation. While islands can be isolated from mainland disturbances, it is unknown what degree of isolation is necessary to avoid unfavorable changes but remain sufficiently connected to maintain population viability. To test this question, we explored connectivity within the Apostle Islands, an archipelago of 22 islands within Lake Superior, by comparing historical and contemporary trends in ice bridge connectivity and by simulating the effect of reduced connectivity within this system. We developed a demographically informed individual-based model to explicitly test the role of connectivity to influence the persistence and genetic diversity of American marten <i>Martes americana</i>, a forest carnivore at risk across its southern range boundary. We found that genetic diversity was resilient to moderate changes in ice cover, but a complete loss of connectivity resulted in rapid genetic erosion. Despite genetic erosion, populations persisted as long as nominal connectivity occurred between islands. Our work suggests that connectivity will decline, but martens would be resilient to moderate changes and, in the short term, the Apostle Islands can act as a refuge along this species' southern range boundary. Identifying thresholds in connectivity that maintain populations but allow for isolation from disturbance will be necessary to identify suitable areas for species conservation across space and time.</p>\",\"PeriodicalId\":51026,\"journal\":{\"name\":\"Ecography\",\"volume\":\"2024 7\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07119\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ecog.07119\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ecog.07119","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Small but connected islands can maintain populations and genetic diversity under climate change
In response to the striking effects of environmental change, conservation strategies often include the identification of conservation areas that can effectively maintain vulnerable species. Consequently, identifying system-specific conditions that maintain the demographic and genetic viability of species of conservation concern is essential. Connectivity plays a critical role in the persistence of populations. Islands have been model systems to understand connectivity and metapopulation processes and have emerged as particularly favorable targets for conservation. While islands can be isolated from mainland disturbances, it is unknown what degree of isolation is necessary to avoid unfavorable changes but remain sufficiently connected to maintain population viability. To test this question, we explored connectivity within the Apostle Islands, an archipelago of 22 islands within Lake Superior, by comparing historical and contemporary trends in ice bridge connectivity and by simulating the effect of reduced connectivity within this system. We developed a demographically informed individual-based model to explicitly test the role of connectivity to influence the persistence and genetic diversity of American marten Martes americana, a forest carnivore at risk across its southern range boundary. We found that genetic diversity was resilient to moderate changes in ice cover, but a complete loss of connectivity resulted in rapid genetic erosion. Despite genetic erosion, populations persisted as long as nominal connectivity occurred between islands. Our work suggests that connectivity will decline, but martens would be resilient to moderate changes and, in the short term, the Apostle Islands can act as a refuge along this species' southern range boundary. Identifying thresholds in connectivity that maintain populations but allow for isolation from disturbance will be necessary to identify suitable areas for species conservation across space and time.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.