Yang Sun, Shuiyu Zeng, Chaolin Guo, Pei Zhou, Yinbiao Xu, Kuiqi Jin, Feifei Han, Yupeng Liu, Hua Li, Zhonghu Bai
{"title":"开发孔雀石绿化学发光检测技术","authors":"Yang Sun, Shuiyu Zeng, Chaolin Guo, Pei Zhou, Yinbiao Xu, Kuiqi Jin, Feifei Han, Yupeng Liu, Hua Li, Zhonghu Bai","doi":"10.1111/jfs.13132","DOIUrl":null,"url":null,"abstract":"<p>Malachite green (MG), a triphenylmethane dye is often used as a fungicide and preservative in fisheries due to its effectiveness against water molds in fish and fish eggs. However, excessive inhalation can be hazardous to human health. To quantify the MG concentration, we created and evaluated a 96-well plate-based chemiluminescence immunoassay (CLIA). This method used provided readings in <30 min, with an optimal incubation time of 15 min and a limit of detection of 0.20 ng·ml<sup>−1</sup>. The strong correlation (<i>R</i><sup>2</sup> >0.99) between the measured values of real fish samples examined using the method and the high-performance liquid chromatography results confirmed the accurate quantitative detection of MG. In this study, CLIA was also used in conjunction with point-of-care testing (POCT) to greatly improve the efficiency of the experiments. Thus, a quantitative detection method based on MG plate chemiluminescence was established herein, with performance indexes that meet the requirements of on-site detection. This approach is also applicable to the detection of small molecule compounds such as chloramphenicol and sulfadiazine pyrimethamine, providing a new direction in the field of food safety detection.</p>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a chemiluminescence detection technique for malachite green\",\"authors\":\"Yang Sun, Shuiyu Zeng, Chaolin Guo, Pei Zhou, Yinbiao Xu, Kuiqi Jin, Feifei Han, Yupeng Liu, Hua Li, Zhonghu Bai\",\"doi\":\"10.1111/jfs.13132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Malachite green (MG), a triphenylmethane dye is often used as a fungicide and preservative in fisheries due to its effectiveness against water molds in fish and fish eggs. However, excessive inhalation can be hazardous to human health. To quantify the MG concentration, we created and evaluated a 96-well plate-based chemiluminescence immunoassay (CLIA). This method used provided readings in <30 min, with an optimal incubation time of 15 min and a limit of detection of 0.20 ng·ml<sup>−1</sup>. The strong correlation (<i>R</i><sup>2</sup> >0.99) between the measured values of real fish samples examined using the method and the high-performance liquid chromatography results confirmed the accurate quantitative detection of MG. In this study, CLIA was also used in conjunction with point-of-care testing (POCT) to greatly improve the efficiency of the experiments. Thus, a quantitative detection method based on MG plate chemiluminescence was established herein, with performance indexes that meet the requirements of on-site detection. This approach is also applicable to the detection of small molecule compounds such as chloramphenicol and sulfadiazine pyrimethamine, providing a new direction in the field of food safety detection.</p>\",\"PeriodicalId\":15814,\"journal\":{\"name\":\"Journal of Food Safety\",\"volume\":\"44 3\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Safety\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfs.13132\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfs.13132","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Development of a chemiluminescence detection technique for malachite green
Malachite green (MG), a triphenylmethane dye is often used as a fungicide and preservative in fisheries due to its effectiveness against water molds in fish and fish eggs. However, excessive inhalation can be hazardous to human health. To quantify the MG concentration, we created and evaluated a 96-well plate-based chemiluminescence immunoassay (CLIA). This method used provided readings in <30 min, with an optimal incubation time of 15 min and a limit of detection of 0.20 ng·ml−1. The strong correlation (R2 >0.99) between the measured values of real fish samples examined using the method and the high-performance liquid chromatography results confirmed the accurate quantitative detection of MG. In this study, CLIA was also used in conjunction with point-of-care testing (POCT) to greatly improve the efficiency of the experiments. Thus, a quantitative detection method based on MG plate chemiluminescence was established herein, with performance indexes that meet the requirements of on-site detection. This approach is also applicable to the detection of small molecule compounds such as chloramphenicol and sulfadiazine pyrimethamine, providing a new direction in the field of food safety detection.
期刊介绍:
The Journal of Food Safety emphasizes mechanistic studies involving inhibition, injury, and metabolism of food poisoning microorganisms, as well as the regulation of growth and toxin production in both model systems and complex food substrates. It also focuses on pathogens which cause food-borne illness, helping readers understand the factors affecting the initial detection of parasites, their development, transmission, and methods of control and destruction.