利用临时协议整合雷法和纳什谈判方法

IF 1 3区 经济学 Q3 ECONOMICS
Kalyan Chatterjee , Rakesh Chaturvedi
{"title":"利用临时协议整合雷法和纳什谈判方法","authors":"Kalyan Chatterjee ,&nbsp;Rakesh Chaturvedi","doi":"10.1016/j.geb.2024.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>Raiffa's solution to the bargaining problem, outlined in <span>Luce and Raiffa (1957)</span>, is the point where the <em>negotiation curve</em> - a sequence of points that constitute step-by-step improvements from the status quo in the feasible payoff space - meets (possibly in the limit) the efficient boundary of the feasible region. A bargaining model with interim agreements yields a negotiation curve in equilibrium (in the spirit of Raiffa), and as the bargaining frictions disappear, the Raiffa path of payoffs converges to the Nash solution.</p></div>","PeriodicalId":48291,"journal":{"name":"Games and Economic Behavior","volume":"146 ","pages":"Pages 105-120"},"PeriodicalIF":1.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Raiffa and Nash approaches to bargaining using interim agreements\",\"authors\":\"Kalyan Chatterjee ,&nbsp;Rakesh Chaturvedi\",\"doi\":\"10.1016/j.geb.2024.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Raiffa's solution to the bargaining problem, outlined in <span>Luce and Raiffa (1957)</span>, is the point where the <em>negotiation curve</em> - a sequence of points that constitute step-by-step improvements from the status quo in the feasible payoff space - meets (possibly in the limit) the efficient boundary of the feasible region. A bargaining model with interim agreements yields a negotiation curve in equilibrium (in the spirit of Raiffa), and as the bargaining frictions disappear, the Raiffa path of payoffs converges to the Nash solution.</p></div>\",\"PeriodicalId\":48291,\"journal\":{\"name\":\"Games and Economic Behavior\",\"volume\":\"146 \",\"pages\":\"Pages 105-120\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Games and Economic Behavior\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089982562400071X\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Games and Economic Behavior","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089982562400071X","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

拉伊法在卢斯和拉伊法(1957)中概述了讨价还价问题的解决方案,即谈判曲线--在可行的报酬空间中构成从现状逐步改善的点序列--与可行区域的有效边界相交(可能在极限中)的点。具有临时协议的谈判模型在均衡状态下会产生一条谈判曲线(符合雷法的精神),随着谈判摩擦的消失,雷法的报酬路径会收敛到纳什解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Raiffa and Nash approaches to bargaining using interim agreements

Raiffa's solution to the bargaining problem, outlined in Luce and Raiffa (1957), is the point where the negotiation curve - a sequence of points that constitute step-by-step improvements from the status quo in the feasible payoff space - meets (possibly in the limit) the efficient boundary of the feasible region. A bargaining model with interim agreements yields a negotiation curve in equilibrium (in the spirit of Raiffa), and as the bargaining frictions disappear, the Raiffa path of payoffs converges to the Nash solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
9.10%
发文量
148
期刊介绍: Games and Economic Behavior facilitates cross-fertilization between theories and applications of game theoretic reasoning. It consistently attracts the best quality and most creative papers in interdisciplinary studies within the social, biological, and mathematical sciences. Most readers recognize it as the leading journal in game theory. Research Areas Include: • Game theory • Economics • Political science • Biology • Computer science • Mathematics • Psychology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信