Xueqing Yang , Yang Liu , Alberto Bezama , Daniela Thrän
{"title":"农业碳排放效率与农业实践:平衡碳减排与农业增产的意义","authors":"Xueqing Yang , Yang Liu , Alberto Bezama , Daniela Thrän","doi":"10.1016/j.envdev.2024.101004","DOIUrl":null,"url":null,"abstract":"<div><p>The current Ukraine War underlines the importance of grain self-sufficiency. After the adoption of the Paris Agreement, two major challenges developing countries are facing in the coming decades are increasing agricultural production to ensure food security and reducing carbon emissions (CE). The key to such an “environment-development dilemma” is to improve agricultural carbon emission efficiency (CEE). Using China as the study site, we systematically analyze the impacts of agricultural management activities on agricultural CEE from 1997 to 2019. Global and local Moran's <em>I</em> index tests provide evidence of a positive spatial dependence of agricultural CEE. Using the LISA cluster map, we observe that high CEE regions tend to be distributed together, dominated by environmental conditions. However, with the promotion of agricultural management activities, such a clustering pattern vanished. Our spatial Durbin model (SDM) estimation results indicate that there are significant nonlinear relationships between agricultural practices and agricultural CEE. While the consumption of fertilizers and pesticides has economies of scale effects, the deployment of agricultural machinery and irrigation have diseconomies of scale effects on local CEE. Based on the SDM results, the direct and indirect effect estimation results suggest that the significant direct and spillover effects of many practices on agricultural CEE have opposite nonlinear shapes, implying a more complicated situation in promoting these activities, as the positive regional effect of an agricultural activity might have a negative impact on adjacent regions. All the results indicate that local policymakers should carefully tailor agricultural development policies based on local environmental conditions.</p></div>","PeriodicalId":54269,"journal":{"name":"Environmental Development","volume":"50 ","pages":"Article 101004"},"PeriodicalIF":4.7000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211464524000423/pdfft?md5=215147811383bc04af9eceba40a2abbc&pid=1-s2.0-S2211464524000423-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Agricultural carbon emission efficiency and agricultural practices: Implications for balancing carbon emissions reduction and agricultural productivity increment\",\"authors\":\"Xueqing Yang , Yang Liu , Alberto Bezama , Daniela Thrän\",\"doi\":\"10.1016/j.envdev.2024.101004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current Ukraine War underlines the importance of grain self-sufficiency. After the adoption of the Paris Agreement, two major challenges developing countries are facing in the coming decades are increasing agricultural production to ensure food security and reducing carbon emissions (CE). The key to such an “environment-development dilemma” is to improve agricultural carbon emission efficiency (CEE). Using China as the study site, we systematically analyze the impacts of agricultural management activities on agricultural CEE from 1997 to 2019. Global and local Moran's <em>I</em> index tests provide evidence of a positive spatial dependence of agricultural CEE. Using the LISA cluster map, we observe that high CEE regions tend to be distributed together, dominated by environmental conditions. However, with the promotion of agricultural management activities, such a clustering pattern vanished. Our spatial Durbin model (SDM) estimation results indicate that there are significant nonlinear relationships between agricultural practices and agricultural CEE. While the consumption of fertilizers and pesticides has economies of scale effects, the deployment of agricultural machinery and irrigation have diseconomies of scale effects on local CEE. Based on the SDM results, the direct and indirect effect estimation results suggest that the significant direct and spillover effects of many practices on agricultural CEE have opposite nonlinear shapes, implying a more complicated situation in promoting these activities, as the positive regional effect of an agricultural activity might have a negative impact on adjacent regions. All the results indicate that local policymakers should carefully tailor agricultural development policies based on local environmental conditions.</p></div>\",\"PeriodicalId\":54269,\"journal\":{\"name\":\"Environmental Development\",\"volume\":\"50 \",\"pages\":\"Article 101004\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211464524000423/pdfft?md5=215147811383bc04af9eceba40a2abbc&pid=1-s2.0-S2211464524000423-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Development\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211464524000423\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Development","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211464524000423","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Agricultural carbon emission efficiency and agricultural practices: Implications for balancing carbon emissions reduction and agricultural productivity increment
The current Ukraine War underlines the importance of grain self-sufficiency. After the adoption of the Paris Agreement, two major challenges developing countries are facing in the coming decades are increasing agricultural production to ensure food security and reducing carbon emissions (CE). The key to such an “environment-development dilemma” is to improve agricultural carbon emission efficiency (CEE). Using China as the study site, we systematically analyze the impacts of agricultural management activities on agricultural CEE from 1997 to 2019. Global and local Moran's I index tests provide evidence of a positive spatial dependence of agricultural CEE. Using the LISA cluster map, we observe that high CEE regions tend to be distributed together, dominated by environmental conditions. However, with the promotion of agricultural management activities, such a clustering pattern vanished. Our spatial Durbin model (SDM) estimation results indicate that there are significant nonlinear relationships between agricultural practices and agricultural CEE. While the consumption of fertilizers and pesticides has economies of scale effects, the deployment of agricultural machinery and irrigation have diseconomies of scale effects on local CEE. Based on the SDM results, the direct and indirect effect estimation results suggest that the significant direct and spillover effects of many practices on agricultural CEE have opposite nonlinear shapes, implying a more complicated situation in promoting these activities, as the positive regional effect of an agricultural activity might have a negative impact on adjacent regions. All the results indicate that local policymakers should carefully tailor agricultural development policies based on local environmental conditions.
期刊介绍:
Environmental Development provides a future oriented, pro-active, authoritative source of information and learning for researchers, postgraduate students, policymakers, and managers, and bridges the gap between fundamental research and the application in management and policy practices. It stimulates the exchange and coupling of traditional scientific knowledge on the environment, with the experiential knowledge among decision makers and other stakeholders and also connects natural sciences and social and behavioral sciences. Environmental Development includes and promotes scientific work from the non-western world, and also strengthens the collaboration between the developed and developing world. Further it links environmental research to broader issues of economic and social-cultural developments, and is intended to shorten the delays between research and publication, while ensuring thorough peer review. Environmental Development also creates a forum for transnational communication, discussion and global action.
Environmental Development is open to a broad range of disciplines and authors. The journal welcomes, in particular, contributions from a younger generation of researchers, and papers expanding the frontiers of environmental sciences, pointing at new directions and innovative answers.
All submissions to Environmental Development are reviewed using the general criteria of quality, originality, precision, importance of topic and insights, clarity of exposition, which are in keeping with the journal''s aims and scope.