Justin D Dennis, Skylar C Holmes, Caitlyn Heredia, Eric J Shumski, Derek N Pamukoff
{"title":"前十字韧带重建者在双肢下落垂直跳跃过程中的下肢关节角度、力矩和协调性。","authors":"Justin D Dennis, Skylar C Holmes, Caitlyn Heredia, Eric J Shumski, Derek N Pamukoff","doi":"10.1080/14763141.2024.2356845","DOIUrl":null,"url":null,"abstract":"<p><p>Individuals with anterior cruciate ligament reconstruction (ACLR) utilise different landing biomechanics between limbs, but previous analyses have not considered the continuous or simultaneous joint motion that occurs during landing and propulsion. The purpose of this study was to compare sagittal plane ankle/knee and knee/hip coordination patterns as well as ankle, knee, and hip angles and moments and vertical ground reaction force (vGRF) between the ACLR and uninjured limbs during landing and propulsion. Fifteen females and thirteen males performed a drop vertical jump from a 30 cm box placed half their height from force platforms. Coordination was compared using a modified vector coding technique and binning analysis. Kinematics and kinetics were time normalised for waveform analyses. Coordination was not different between limbs. The ACLR limb had smaller dorsiflexion angles from 11 to 16% of landing and 24 to 75% of landing and propulsion, knee flexion moments from 5 to 15% of landing, 20 to 31% of landing, and 35 to 91% of landing and propulsion, and vGRF from 92 to 94% of propulsion compared with the uninjured limb. The ACLR limb exhibited smaller dorsiflexion angles to potentially reduce the knee joint moment arm and mitigate the eccentric and concentric demands on the ACLR knee during landing and propulsion, respectively.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-16"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower extremity joint angle, moment, and coordination throughout a double limb drop vertical jump in individuals with anterior cruciate ligament reconstruction.\",\"authors\":\"Justin D Dennis, Skylar C Holmes, Caitlyn Heredia, Eric J Shumski, Derek N Pamukoff\",\"doi\":\"10.1080/14763141.2024.2356845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Individuals with anterior cruciate ligament reconstruction (ACLR) utilise different landing biomechanics between limbs, but previous analyses have not considered the continuous or simultaneous joint motion that occurs during landing and propulsion. The purpose of this study was to compare sagittal plane ankle/knee and knee/hip coordination patterns as well as ankle, knee, and hip angles and moments and vertical ground reaction force (vGRF) between the ACLR and uninjured limbs during landing and propulsion. Fifteen females and thirteen males performed a drop vertical jump from a 30 cm box placed half their height from force platforms. Coordination was compared using a modified vector coding technique and binning analysis. Kinematics and kinetics were time normalised for waveform analyses. Coordination was not different between limbs. The ACLR limb had smaller dorsiflexion angles from 11 to 16% of landing and 24 to 75% of landing and propulsion, knee flexion moments from 5 to 15% of landing, 20 to 31% of landing, and 35 to 91% of landing and propulsion, and vGRF from 92 to 94% of propulsion compared with the uninjured limb. The ACLR limb exhibited smaller dorsiflexion angles to potentially reduce the knee joint moment arm and mitigate the eccentric and concentric demands on the ACLR knee during landing and propulsion, respectively.</p>\",\"PeriodicalId\":49482,\"journal\":{\"name\":\"Sports Biomechanics\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14763141.2024.2356845\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2024.2356845","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Lower extremity joint angle, moment, and coordination throughout a double limb drop vertical jump in individuals with anterior cruciate ligament reconstruction.
Individuals with anterior cruciate ligament reconstruction (ACLR) utilise different landing biomechanics between limbs, but previous analyses have not considered the continuous or simultaneous joint motion that occurs during landing and propulsion. The purpose of this study was to compare sagittal plane ankle/knee and knee/hip coordination patterns as well as ankle, knee, and hip angles and moments and vertical ground reaction force (vGRF) between the ACLR and uninjured limbs during landing and propulsion. Fifteen females and thirteen males performed a drop vertical jump from a 30 cm box placed half their height from force platforms. Coordination was compared using a modified vector coding technique and binning analysis. Kinematics and kinetics were time normalised for waveform analyses. Coordination was not different between limbs. The ACLR limb had smaller dorsiflexion angles from 11 to 16% of landing and 24 to 75% of landing and propulsion, knee flexion moments from 5 to 15% of landing, 20 to 31% of landing, and 35 to 91% of landing and propulsion, and vGRF from 92 to 94% of propulsion compared with the uninjured limb. The ACLR limb exhibited smaller dorsiflexion angles to potentially reduce the knee joint moment arm and mitigate the eccentric and concentric demands on the ACLR knee during landing and propulsion, respectively.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.