利用红树林(Avicennia marina)叶提取物轻松合成银和金纳米粒子及其细胞毒性和杀幼虫剂活性。

IF 0.7 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Hamed A Gramah, Zubair Ahmad, Essam H Ibrahim
{"title":"利用红树林(Avicennia marina)叶提取物轻松合成银和金纳米粒子及其细胞毒性和杀幼虫剂活性。","authors":"Hamed A Gramah, Zubair Ahmad, Essam H Ibrahim","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The field of bio-fabricated noble metallic nanoparticles (NPs) has gained significant attention in applied research due to their eco-friendly and biocompatible nature. This study focuses on employing a green synthesis method to produce silver and gold nanoparticles (bio-fabricated) using a Mangrove plant extract and assessing their insecticidal and growth-inhibitory effects for environmentally friendly pest control. The resulting NPs underwent comprehensive characterization through various spectroscopy techniques. The morphology of both silver and gold mediated nanoparticles of Avicennia marina leaf extract displayed a spherical shape, with average sizes measuring around 70-80 nm and 95-100 nm, respectively. Regarding cytotoxicity, the inhibitory effects of silver nanoparticles were less than that observed by the extract alone while gold nanoparticles showed stronger cell growth inhibitory effects on splenic cells. The hepatic toxicity of silver and gold nanoparticles showed significant toxic effects as compared to A. marina extract alone. Notably, as prepared silver nanoparticles exhibited substantial larvicidal toxicity as compared to gold nanoparticles, when tested against fourth instar Culex pipiens larvae. These biocompatible silver and gold nanoparticles prepared from A. marina leaf extract hold promise for future applications as larvicides to effectively control mosquito species.</p>","PeriodicalId":19971,"journal":{"name":"Pakistan journal of pharmaceutical sciences","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile synthesis of silver and gold nanoparticles using mangrove (Avicennia marina) leaves extract and its cytotoxicity and larvicidal activity.\",\"authors\":\"Hamed A Gramah, Zubair Ahmad, Essam H Ibrahim\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The field of bio-fabricated noble metallic nanoparticles (NPs) has gained significant attention in applied research due to their eco-friendly and biocompatible nature. This study focuses on employing a green synthesis method to produce silver and gold nanoparticles (bio-fabricated) using a Mangrove plant extract and assessing their insecticidal and growth-inhibitory effects for environmentally friendly pest control. The resulting NPs underwent comprehensive characterization through various spectroscopy techniques. The morphology of both silver and gold mediated nanoparticles of Avicennia marina leaf extract displayed a spherical shape, with average sizes measuring around 70-80 nm and 95-100 nm, respectively. Regarding cytotoxicity, the inhibitory effects of silver nanoparticles were less than that observed by the extract alone while gold nanoparticles showed stronger cell growth inhibitory effects on splenic cells. The hepatic toxicity of silver and gold nanoparticles showed significant toxic effects as compared to A. marina extract alone. Notably, as prepared silver nanoparticles exhibited substantial larvicidal toxicity as compared to gold nanoparticles, when tested against fourth instar Culex pipiens larvae. These biocompatible silver and gold nanoparticles prepared from A. marina leaf extract hold promise for future applications as larvicides to effectively control mosquito species.</p>\",\"PeriodicalId\":19971,\"journal\":{\"name\":\"Pakistan journal of pharmaceutical sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pakistan journal of pharmaceutical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

生物制造的贵金属纳米粒子(NPs)因其生态友好和生物相容性,在应用研究领域获得了极大关注。本研究的重点是采用一种绿色合成方法,利用红树植物提取物生产银纳米粒子和金纳米粒子(生物制造),并评估其杀虫和抑制生长的效果,以实现环境友好型害虫控制。通过各种光谱技术对所制备的纳米粒子进行了综合表征。以金和银为介质的海茴香叶提取物纳米粒子的形态呈球形,平均尺寸分别为 70-80 nm 和 95-100 nm。在细胞毒性方面,银纳米粒子的抑制作用小于单独提取物的抑制作用,而金纳米粒子对脾脏细胞的细胞生长抑制作用更强。与单独的 A. marina 提取物相比,银纳米颗粒和金纳米颗粒的肝毒性表现出明显的毒性作用。值得注意的是,与金纳米粒子相比,制备的银纳米粒子在对库蚊第四龄幼虫进行测试时表现出了很强的杀幼虫毒性。从海滨翠菊叶提取物中制备的这些具有生物相容性的银纳米颗粒和金纳米颗粒有望在未来用作杀幼虫剂,以有效控制蚊虫物种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facile synthesis of silver and gold nanoparticles using mangrove (Avicennia marina) leaves extract and its cytotoxicity and larvicidal activity.

The field of bio-fabricated noble metallic nanoparticles (NPs) has gained significant attention in applied research due to their eco-friendly and biocompatible nature. This study focuses on employing a green synthesis method to produce silver and gold nanoparticles (bio-fabricated) using a Mangrove plant extract and assessing their insecticidal and growth-inhibitory effects for environmentally friendly pest control. The resulting NPs underwent comprehensive characterization through various spectroscopy techniques. The morphology of both silver and gold mediated nanoparticles of Avicennia marina leaf extract displayed a spherical shape, with average sizes measuring around 70-80 nm and 95-100 nm, respectively. Regarding cytotoxicity, the inhibitory effects of silver nanoparticles were less than that observed by the extract alone while gold nanoparticles showed stronger cell growth inhibitory effects on splenic cells. The hepatic toxicity of silver and gold nanoparticles showed significant toxic effects as compared to A. marina extract alone. Notably, as prepared silver nanoparticles exhibited substantial larvicidal toxicity as compared to gold nanoparticles, when tested against fourth instar Culex pipiens larvae. These biocompatible silver and gold nanoparticles prepared from A. marina leaf extract hold promise for future applications as larvicides to effectively control mosquito species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
211
审稿时长
4.5 months
期刊介绍: Pakistan Journal of Pharmaceutical Sciences (PJPS) is a peer reviewed multi-disciplinary pharmaceutical sciences journal. The PJPS had its origin in 1988 from the Faculty of Pharmacy, University of Karachi as a biannual journal, frequency converted as quarterly in 2005, and now PJPS is being published as bi-monthly from January 2013. PJPS covers Biological, Pharmaceutical and Medicinal Research (Drug Delivery, Pharmacy Management, Molecular Biology, Biochemical, Pharmacology, Pharmacokinetics, Phytochemical, Bio-analytical, Therapeutics, Biotechnology and research on nano particles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信