Yuzi Zhang, Lin Ge, Lance A Waller, Sarita Shah, Robert H Lyles
{"title":"在疾病监测中强调专家意见的捕获-再捕获建模框架。","authors":"Yuzi Zhang, Lin Ge, Lance A Waller, Sarita Shah, Robert H Lyles","doi":"10.1177/09622802241254217","DOIUrl":null,"url":null,"abstract":"<p><p>In disease surveillance, capture-recapture methods are commonly used to estimate the number of diseased cases in a defined target population. Since the number of cases never identified by any surveillance system cannot be observed, estimation of the case count typically requires at least one crucial assumption about the dependency between surveillance systems. However, such assumptions are generally unverifiable based on the observed data alone. In this paper, we advocate a modeling framework hinging on the choice of a key population-level parameter that reflects dependencies among surveillance streams. With the key dependency parameter as the focus, the proposed method offers the benefits of (a) incorporating expert opinion in the spirit of prior information to guide estimation; (b) providing accessible bias corrections, and (c) leveraging an adapted credible interval approach to facilitate inference. We apply the proposed framework to two real human immunodeficiency virus surveillance datasets exhibiting three-stream and four-stream capture-recapture-based case count estimation. Our approach enables estimation of the number of human immunodeficiency virus positive cases for both examples, under realistic assumptions that are under the investigator's control and can be readily interpreted. The proposed framework also permits principled uncertainty analyses through which a user can acknowledge their level of confidence in assumptions made about the key non-identifiable dependency parameter.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1197-1210"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347122/pdf/","citationCount":"0","resultStr":"{\"title\":\"A capture-recapture modeling framework emphasizing expert opinion in disease surveillance.\",\"authors\":\"Yuzi Zhang, Lin Ge, Lance A Waller, Sarita Shah, Robert H Lyles\",\"doi\":\"10.1177/09622802241254217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In disease surveillance, capture-recapture methods are commonly used to estimate the number of diseased cases in a defined target population. Since the number of cases never identified by any surveillance system cannot be observed, estimation of the case count typically requires at least one crucial assumption about the dependency between surveillance systems. However, such assumptions are generally unverifiable based on the observed data alone. In this paper, we advocate a modeling framework hinging on the choice of a key population-level parameter that reflects dependencies among surveillance streams. With the key dependency parameter as the focus, the proposed method offers the benefits of (a) incorporating expert opinion in the spirit of prior information to guide estimation; (b) providing accessible bias corrections, and (c) leveraging an adapted credible interval approach to facilitate inference. We apply the proposed framework to two real human immunodeficiency virus surveillance datasets exhibiting three-stream and four-stream capture-recapture-based case count estimation. Our approach enables estimation of the number of human immunodeficiency virus positive cases for both examples, under realistic assumptions that are under the investigator's control and can be readily interpreted. The proposed framework also permits principled uncertainty analyses through which a user can acknowledge their level of confidence in assumptions made about the key non-identifiable dependency parameter.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"1197-1210\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347122/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241254217\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241254217","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
A capture-recapture modeling framework emphasizing expert opinion in disease surveillance.
In disease surveillance, capture-recapture methods are commonly used to estimate the number of diseased cases in a defined target population. Since the number of cases never identified by any surveillance system cannot be observed, estimation of the case count typically requires at least one crucial assumption about the dependency between surveillance systems. However, such assumptions are generally unverifiable based on the observed data alone. In this paper, we advocate a modeling framework hinging on the choice of a key population-level parameter that reflects dependencies among surveillance streams. With the key dependency parameter as the focus, the proposed method offers the benefits of (a) incorporating expert opinion in the spirit of prior information to guide estimation; (b) providing accessible bias corrections, and (c) leveraging an adapted credible interval approach to facilitate inference. We apply the proposed framework to two real human immunodeficiency virus surveillance datasets exhibiting three-stream and four-stream capture-recapture-based case count estimation. Our approach enables estimation of the number of human immunodeficiency virus positive cases for both examples, under realistic assumptions that are under the investigator's control and can be readily interpreted. The proposed framework also permits principled uncertainty analyses through which a user can acknowledge their level of confidence in assumptions made about the key non-identifiable dependency parameter.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)