Tan Wang, Huan Chen, Ningning Li, Bao Zhang, Hanyi Min
{"title":"通过生物信息学和机器学习分析 PDR 病例与对照组的眼房水蛋白质组学。","authors":"Tan Wang, Huan Chen, Ningning Li, Bao Zhang, Hanyi Min","doi":"10.1186/s12014-024-09481-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To comprehend the complexities of pathophysiological mechanisms and molecular events that contribute to proliferative diabetic retinopathy (PDR) and evaluate the diagnostic value of aqueous humor (AH) in monitoring the onset of PDR.</p><p><strong>Methods: </strong>A cohort containing 16 PDR and 10 cataract patients and another validation cohort containing 8 PDR and 4 cataract patients were studied. AH was collected and subjected to proteomics analyses. Bioinformatics analysis and a machine learning-based pipeline called inference of biomolecular combinations with minimal bias were used to explore the functional relevance, hub proteins, and biomarkers.</p><p><strong>Results: </strong>Deep profiling of AH proteomes revealed several insights. First, the combination of SIAE, SEMA7A, GNS, and IGKV3D-15 and the combination of ATP6AP1, SPARCL1, and SERPINA7 could serve as surrogate protein biomarkers for monitoring PDR progression. Second, ALB, FN1, ACTB, SERPINA1, C3, and VTN acted as hub proteins in the profiling of AH proteomes. SERPINA1 was the protein with the highest correlation coefficient not only for BCVA but also for the duration of diabetes. Third, \"Complement and coagulation cascades\" was an important pathway for PDR development.</p><p><strong>Conclusions: </strong>AH proteomics provides stable and accurate biomarkers for early warning and diagnosis of PDR. This study provides a deep understanding of the molecular mechanisms of PDR and a rich resource for optimizing PDR management.</p>","PeriodicalId":10468,"journal":{"name":"Clinical proteomics","volume":"21 1","pages":"36"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11103871/pdf/","citationCount":"0","resultStr":"{\"title\":\"Aqueous humor proteomics analyzed by bioinformatics and machine learning in PDR cases versus controls.\",\"authors\":\"Tan Wang, Huan Chen, Ningning Li, Bao Zhang, Hanyi Min\",\"doi\":\"10.1186/s12014-024-09481-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>To comprehend the complexities of pathophysiological mechanisms and molecular events that contribute to proliferative diabetic retinopathy (PDR) and evaluate the diagnostic value of aqueous humor (AH) in monitoring the onset of PDR.</p><p><strong>Methods: </strong>A cohort containing 16 PDR and 10 cataract patients and another validation cohort containing 8 PDR and 4 cataract patients were studied. AH was collected and subjected to proteomics analyses. Bioinformatics analysis and a machine learning-based pipeline called inference of biomolecular combinations with minimal bias were used to explore the functional relevance, hub proteins, and biomarkers.</p><p><strong>Results: </strong>Deep profiling of AH proteomes revealed several insights. First, the combination of SIAE, SEMA7A, GNS, and IGKV3D-15 and the combination of ATP6AP1, SPARCL1, and SERPINA7 could serve as surrogate protein biomarkers for monitoring PDR progression. Second, ALB, FN1, ACTB, SERPINA1, C3, and VTN acted as hub proteins in the profiling of AH proteomes. SERPINA1 was the protein with the highest correlation coefficient not only for BCVA but also for the duration of diabetes. Third, \\\"Complement and coagulation cascades\\\" was an important pathway for PDR development.</p><p><strong>Conclusions: </strong>AH proteomics provides stable and accurate biomarkers for early warning and diagnosis of PDR. This study provides a deep understanding of the molecular mechanisms of PDR and a rich resource for optimizing PDR management.</p>\",\"PeriodicalId\":10468,\"journal\":{\"name\":\"Clinical proteomics\",\"volume\":\"21 1\",\"pages\":\"36\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11103871/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical proteomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12014-024-09481-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical proteomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12014-024-09481-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Aqueous humor proteomics analyzed by bioinformatics and machine learning in PDR cases versus controls.
Background: To comprehend the complexities of pathophysiological mechanisms and molecular events that contribute to proliferative diabetic retinopathy (PDR) and evaluate the diagnostic value of aqueous humor (AH) in monitoring the onset of PDR.
Methods: A cohort containing 16 PDR and 10 cataract patients and another validation cohort containing 8 PDR and 4 cataract patients were studied. AH was collected and subjected to proteomics analyses. Bioinformatics analysis and a machine learning-based pipeline called inference of biomolecular combinations with minimal bias were used to explore the functional relevance, hub proteins, and biomarkers.
Results: Deep profiling of AH proteomes revealed several insights. First, the combination of SIAE, SEMA7A, GNS, and IGKV3D-15 and the combination of ATP6AP1, SPARCL1, and SERPINA7 could serve as surrogate protein biomarkers for monitoring PDR progression. Second, ALB, FN1, ACTB, SERPINA1, C3, and VTN acted as hub proteins in the profiling of AH proteomes. SERPINA1 was the protein with the highest correlation coefficient not only for BCVA but also for the duration of diabetes. Third, "Complement and coagulation cascades" was an important pathway for PDR development.
Conclusions: AH proteomics provides stable and accurate biomarkers for early warning and diagnosis of PDR. This study provides a deep understanding of the molecular mechanisms of PDR and a rich resource for optimizing PDR management.
期刊介绍:
Clinical Proteomics encompasses all aspects of translational proteomics. Special emphasis will be placed on the application of proteomic technology to all aspects of clinical research and molecular medicine. The journal is committed to rapid scientific review and timely publication of submitted manuscripts.