利用基于 DL 的技术评估用于皮肤恶性肿瘤检测的高维数据分类。

IF 1.8 4区 医学 Q3 ONCOLOGY
Cancer Investigation Pub Date : 2024-05-01 Epub Date: 2024-05-20 DOI:10.1080/07357907.2024.2345184
B Gunasundari, R Thiagarajan
{"title":"利用基于 DL 的技术评估用于皮肤恶性肿瘤检测的高维数据分类。","authors":"B Gunasundari, R Thiagarajan","doi":"10.1080/07357907.2024.2345184","DOIUrl":null,"url":null,"abstract":"<p><p>Skin cancer can be detected through visual screening and skin analysis based on the biopsy and pathological state of the human body. The survival rate of cancer patients is low, and millions of people are diagnosed annually. By determining the different comparative analyses, the skin malignancy classification is evaluated. Using the Isomap with the vision transformer, we analyze the high-dimensional images with dimensionality reduction. Skin cancer can present with severe cases and life-threatening symptoms. Overall performance evaluation and classification tend to improve the accuracy of the high-dimensional skin lesion dataset when completed. In deep learning methodologies, the distinct phases of skin malignancy classification are determined by its accuracy, specificity, F1 recall, and sensitivity while implementing the classification methodology. A nonlinear dimensionality reduction technique called Isomap preserves the data's underlying nonlinear relationships intact. This is essential for the categorization of skin malignancies, as the features that separate malignant from benign skin lesions may not be linearly separable. Isomap decreases the data's complexity while maintaining its essential characteristics, making it simpler to analyze and explain the findings. High-dimensional datasets for skin lesions have been evaluated and classified more effectively when evaluated and classified using Isomap with the vision transformer.</p>","PeriodicalId":9463,"journal":{"name":"Cancer Investigation","volume":" ","pages":"365-389"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of High-Dimensional Data Classification for Skin Malignancy Detection Using DL-Based Techniques.\",\"authors\":\"B Gunasundari, R Thiagarajan\",\"doi\":\"10.1080/07357907.2024.2345184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skin cancer can be detected through visual screening and skin analysis based on the biopsy and pathological state of the human body. The survival rate of cancer patients is low, and millions of people are diagnosed annually. By determining the different comparative analyses, the skin malignancy classification is evaluated. Using the Isomap with the vision transformer, we analyze the high-dimensional images with dimensionality reduction. Skin cancer can present with severe cases and life-threatening symptoms. Overall performance evaluation and classification tend to improve the accuracy of the high-dimensional skin lesion dataset when completed. In deep learning methodologies, the distinct phases of skin malignancy classification are determined by its accuracy, specificity, F1 recall, and sensitivity while implementing the classification methodology. A nonlinear dimensionality reduction technique called Isomap preserves the data's underlying nonlinear relationships intact. This is essential for the categorization of skin malignancies, as the features that separate malignant from benign skin lesions may not be linearly separable. Isomap decreases the data's complexity while maintaining its essential characteristics, making it simpler to analyze and explain the findings. High-dimensional datasets for skin lesions have been evaluated and classified more effectively when evaluated and classified using Isomap with the vision transformer.</p>\",\"PeriodicalId\":9463,\"journal\":{\"name\":\"Cancer Investigation\",\"volume\":\" \",\"pages\":\"365-389\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/07357907.2024.2345184\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/07357907.2024.2345184","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

皮肤癌可通过肉眼筛查和皮肤分析,根据人体活检和病理状态进行检测。癌症患者的存活率很低,每年有数百万人被确诊。通过确定不同的比较分析,对皮肤恶性肿瘤分类进行评估。通过使用带有视觉变换器的 Isomap,我们对高维图像进行了降维分析。皮肤癌可表现为严重的病例和危及生命的症状。在完成整体性能评估和分类后,高维皮肤病变数据集的准确性趋于提高。在深度学习方法中,皮肤恶性肿瘤分类的不同阶段由其准确性、特异性、F1召回率和灵敏度决定,同时实施分类方法。一种名为 Isomap 的非线性降维技术能完整地保留数据的基本非线性关系。这对皮肤恶性肿瘤的分类至关重要,因为区分恶性和良性皮肤病变的特征可能不是线性可分的。Isomap 在保持数据基本特征的同时降低了数据的复杂性,使分析和解释结果变得更加简单。在使用 Isomap 和视觉转换器对皮肤病变的高维数据集进行评估和分类时,效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of High-Dimensional Data Classification for Skin Malignancy Detection Using DL-Based Techniques.

Skin cancer can be detected through visual screening and skin analysis based on the biopsy and pathological state of the human body. The survival rate of cancer patients is low, and millions of people are diagnosed annually. By determining the different comparative analyses, the skin malignancy classification is evaluated. Using the Isomap with the vision transformer, we analyze the high-dimensional images with dimensionality reduction. Skin cancer can present with severe cases and life-threatening symptoms. Overall performance evaluation and classification tend to improve the accuracy of the high-dimensional skin lesion dataset when completed. In deep learning methodologies, the distinct phases of skin malignancy classification are determined by its accuracy, specificity, F1 recall, and sensitivity while implementing the classification methodology. A nonlinear dimensionality reduction technique called Isomap preserves the data's underlying nonlinear relationships intact. This is essential for the categorization of skin malignancies, as the features that separate malignant from benign skin lesions may not be linearly separable. Isomap decreases the data's complexity while maintaining its essential characteristics, making it simpler to analyze and explain the findings. High-dimensional datasets for skin lesions have been evaluated and classified more effectively when evaluated and classified using Isomap with the vision transformer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Investigation
Cancer Investigation 医学-肿瘤学
CiteScore
3.80
自引率
4.20%
发文量
71
审稿时长
8.5 months
期刊介绍: Cancer Investigation is one of the most highly regarded and recognized journals in the field of basic and clinical oncology. It is designed to give physicians a comprehensive resource on the current state of progress in the cancer field as well as a broad background of reliable information necessary for effective decision making. In addition to presenting original papers of fundamental significance, it also publishes reviews, essays, specialized presentations of controversies, considerations of new technologies and their applications to specific laboratory problems, discussions of public issues, miniseries on major topics, new and experimental drugs and therapies, and an innovative letters to the editor section. One of the unique features of the journal is its departmentalized editorial sections reporting on more than 30 subject categories covering the broad spectrum of specialized areas that together comprise the field of oncology. Edited by leading physicians and research scientists, these sections make Cancer Investigation the prime resource for clinicians seeking to make sense of the sometimes-overwhelming amount of information available throughout the field. In addition to its peer-reviewed clinical research, the journal also features translational studies that bridge the gap between the laboratory and the clinic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信