Carlos Barreiro, Silvia M Albillos, Carlos García-Estrada
{"title":"蛹青霉:超越青霉素","authors":"Carlos Barreiro, Silvia M Albillos, Carlos García-Estrada","doi":"10.1016/bs.aambs.2024.02.006","DOIUrl":null,"url":null,"abstract":"<p><p>Almost one century after the Sir Alexander Fleming's fortuitous discovery of penicillin and the identification of the fungal producer as Penicillium notatum, later Penicillium chrysogenum (currently reidentified as Penicillium rubens), the molecular mechanisms behind the massive production of penicillin titers by industrial strains could be considered almost fully characterized. However, this filamentous fungus is not only circumscribed to penicillin, and instead, it seems to be full of surprises, thereby producing important metabolites and providing expanded biotechnological applications. This review, in addition to summarizing the classical role of P. chrysogenum as penicillin producer, highlights its ability to generate an array of additional bioactive secondary metabolites and enzymes, together with the use of this microorganism in relevant biotechnological processes, such as bioremediation, biocontrol, production of bioactive nanoparticles and compounds with pharmaceutical interest, revalorization of agricultural and food-derived wastes or the enhancement of food industrial processes and the agricultural production.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":"127 ","pages":"143-221"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penicillium chrysogenum: Beyond the penicillin.\",\"authors\":\"Carlos Barreiro, Silvia M Albillos, Carlos García-Estrada\",\"doi\":\"10.1016/bs.aambs.2024.02.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Almost one century after the Sir Alexander Fleming's fortuitous discovery of penicillin and the identification of the fungal producer as Penicillium notatum, later Penicillium chrysogenum (currently reidentified as Penicillium rubens), the molecular mechanisms behind the massive production of penicillin titers by industrial strains could be considered almost fully characterized. However, this filamentous fungus is not only circumscribed to penicillin, and instead, it seems to be full of surprises, thereby producing important metabolites and providing expanded biotechnological applications. This review, in addition to summarizing the classical role of P. chrysogenum as penicillin producer, highlights its ability to generate an array of additional bioactive secondary metabolites and enzymes, together with the use of this microorganism in relevant biotechnological processes, such as bioremediation, biocontrol, production of bioactive nanoparticles and compounds with pharmaceutical interest, revalorization of agricultural and food-derived wastes or the enhancement of food industrial processes and the agricultural production.</p>\",\"PeriodicalId\":7298,\"journal\":{\"name\":\"Advances in applied microbiology\",\"volume\":\"127 \",\"pages\":\"143-221\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in applied microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.aambs.2024.02.006\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.aambs.2024.02.006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
摘要
在亚历山大-弗莱明(Alexander Fleming)爵士偶然发现青霉素并确定生产青霉素的真菌为诺坦青霉(Penicillium notatum)、后来的蛹青霉(Penicillium chrysogenum)(目前被重新鉴定为鲁本青霉)将近一个世纪之后,工业菌株大量生产青霉素滴度背后的分子机制几乎可以说已经完全定性。然而,这种丝状真菌并不仅仅局限于青霉素,相反,它似乎充满了惊喜,从而产生了重要的代谢产物,并提供了更多的生物技术应用。这篇综述除了总结 P. chrysogenum 作为青霉素生产者的经典作用外,还强调了它产生一系列其他生物活性次生代谢物和酶的能力,以及这种微生物在相关生物技术过程中的应用,如生物修复、生物防治、生产生物活性纳米粒子和具有药用价值的化合物、农业和食品衍生废物的再利用或食品工业过程和农业生产的改进。
Almost one century after the Sir Alexander Fleming's fortuitous discovery of penicillin and the identification of the fungal producer as Penicillium notatum, later Penicillium chrysogenum (currently reidentified as Penicillium rubens), the molecular mechanisms behind the massive production of penicillin titers by industrial strains could be considered almost fully characterized. However, this filamentous fungus is not only circumscribed to penicillin, and instead, it seems to be full of surprises, thereby producing important metabolites and providing expanded biotechnological applications. This review, in addition to summarizing the classical role of P. chrysogenum as penicillin producer, highlights its ability to generate an array of additional bioactive secondary metabolites and enzymes, together with the use of this microorganism in relevant biotechnological processes, such as bioremediation, biocontrol, production of bioactive nanoparticles and compounds with pharmaceutical interest, revalorization of agricultural and food-derived wastes or the enhancement of food industrial processes and the agricultural production.
期刊介绍:
Advances in Applied Microbiology offers intensive reviews of the latest techniques and discoveries in this rapidly moving field. The editors are recognized experts and the format is comprehensive and instructive.
Published since 1959, Advances in Applied Microbiology continues to be one of the most widely read and authoritative review sources in microbiology.
Recent areas covered include bacterial diversity in the human gut, protozoan grazing of freshwater biofilms, metals in yeast fermentation processes and the interpretation of host-pathogen dialogue through microarrays.