网络药理学和分子对接:探索豆科植物抗高血压潜力的组合计算方法。

IF 4.3 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zainab Shahzadi, Zubaida Yousaf, Irfan Anjum, Muhammad Bilal, Hamna Yasin, Arusa Aftab, Anthony Booker, Riaz Ullah, Ahmed Bari
{"title":"网络药理学和分子对接:探索豆科植物抗高血压潜力的组合计算方法。","authors":"Zainab Shahzadi, Zubaida Yousaf, Irfan Anjum, Muhammad Bilal, Hamna Yasin, Arusa Aftab, Anthony Booker, Riaz Ullah, Ahmed Bari","doi":"10.1186/s40643-024-00764-6","DOIUrl":null,"url":null,"abstract":"<p><p>Hypertension is a major global public health issue, affecting quarter of adults worldwide. Numerous synthetic drugs are available for treating hypertension; however, they often come with a higher risk of side effects and long-term therapy. Modern formulations with active phytoconstituents are gaining popularity, addressing some of these issues. This study aims to discover novel antihypertensive compounds in Cassia fistula, Senna alexandrina, and Cassia occidentalis from family Fabaceae and understand their interaction mechanism with hypertension targeted genes, using network pharmacology and molecular docking. Total 414 compounds were identified; initial screening was conducted based on their pharmacokinetic and ADMET properties, with a particular emphasis on adherence to Lipinski's rules. 6 compounds, namely Germichrysone, Benzeneacetic acid, Flavan-3-ol, 5,7,3',4'-Tetrahydroxy-6, 8-dimethoxyflavon, Dihydrokaempferol, and Epiafzelechin, were identified as effective agents. Most of the compounds found non-toxic against various indicators with greater bioactivity score. 161 common targets were obtained against these compounds and hypertension followed by compound-target network construction and protein-protein interaction, which showed their role in diverse biological system. Top hub genes identified were TLR4, MMP9, MAPK14, AKT1, VEGFA and HSP90AA1 with their respective associates. Higher binding affinities was found with three compounds Dihydrokaempferol, Flavan-3-ol and Germichrysone, -7.1, -9.0 and -8.0 kcal/mol, respectively. The MD simulation results validate the structural flexibility of two complexes Flavan-MMP9 and Germich-TLR4 based on no. of hydrogen bonds, root mean square deviations and interaction energies. This study concluded that C. fistula (Dihydrokaempferol, Flavan-3-ol) and C. occidentalis (Germichrysone) have potential therapeutic active constituents to treat hypertension and in future novel drug formulation.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"11 1","pages":"53"},"PeriodicalIF":4.3000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106056/pdf/","citationCount":"0","resultStr":"{\"title\":\"Network pharmacology and molecular docking: combined computational approaches to explore the antihypertensive potential of Fabaceae species.\",\"authors\":\"Zainab Shahzadi, Zubaida Yousaf, Irfan Anjum, Muhammad Bilal, Hamna Yasin, Arusa Aftab, Anthony Booker, Riaz Ullah, Ahmed Bari\",\"doi\":\"10.1186/s40643-024-00764-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypertension is a major global public health issue, affecting quarter of adults worldwide. Numerous synthetic drugs are available for treating hypertension; however, they often come with a higher risk of side effects and long-term therapy. Modern formulations with active phytoconstituents are gaining popularity, addressing some of these issues. This study aims to discover novel antihypertensive compounds in Cassia fistula, Senna alexandrina, and Cassia occidentalis from family Fabaceae and understand their interaction mechanism with hypertension targeted genes, using network pharmacology and molecular docking. Total 414 compounds were identified; initial screening was conducted based on their pharmacokinetic and ADMET properties, with a particular emphasis on adherence to Lipinski's rules. 6 compounds, namely Germichrysone, Benzeneacetic acid, Flavan-3-ol, 5,7,3',4'-Tetrahydroxy-6, 8-dimethoxyflavon, Dihydrokaempferol, and Epiafzelechin, were identified as effective agents. Most of the compounds found non-toxic against various indicators with greater bioactivity score. 161 common targets were obtained against these compounds and hypertension followed by compound-target network construction and protein-protein interaction, which showed their role in diverse biological system. Top hub genes identified were TLR4, MMP9, MAPK14, AKT1, VEGFA and HSP90AA1 with their respective associates. Higher binding affinities was found with three compounds Dihydrokaempferol, Flavan-3-ol and Germichrysone, -7.1, -9.0 and -8.0 kcal/mol, respectively. The MD simulation results validate the structural flexibility of two complexes Flavan-MMP9 and Germich-TLR4 based on no. of hydrogen bonds, root mean square deviations and interaction energies. This study concluded that C. fistula (Dihydrokaempferol, Flavan-3-ol) and C. occidentalis (Germichrysone) have potential therapeutic active constituents to treat hypertension and in future novel drug formulation.</p>\",\"PeriodicalId\":9067,\"journal\":{\"name\":\"Bioresources and Bioprocessing\",\"volume\":\"11 1\",\"pages\":\"53\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106056/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresources and Bioprocessing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40643-024-00764-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-024-00764-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

高血压是一个重大的全球公共卫生问题,影响着全球四分之一的成年人。目前有许多治疗高血压的合成药物,但这些药物往往具有较高的副作用和长期治疗的风险。含有活性植物成分的现代制剂越来越受欢迎,解决了其中的一些问题。本研究旨在利用网络药理学和分子对接技术,从豆科植物决明、番泻叶和西洋决明中发现新型抗高血压化合物,并了解它们与高血压靶基因的相互作用机制。共鉴定出 414 个化合物;根据其药代动力学和 ADMET 特性进行了初步筛选,特别强调要符合 Lipinski 规则。6 个化合物,即胚芽鞘酮、苯乙酸、黄烷-3-醇、5,7,3',4'-四羟基-6,8-二甲氧基黄酮、二氢莰菲醇和表烯醇,被确定为有效药物。大多数化合物对各种指标均无毒性,生物活性得分更高。通过化合物-靶标网络构建和蛋白质-蛋白质相互作用,发现了 161 个针对这些化合物和高血压的常见靶标,显示了它们在不同生物系统中的作用。发现的首要中心基因是 TLR4、MMP9、MAPK14、AKT1、VEGFA 和 HSP90AA1 及其各自的关联基因。研究发现,二氢山奈酚、黄烷-3-醇和德国菊酮这三种化合物的结合亲和力较高,分别为-7.1、-9.0 和 -8.0千卡/摩尔。根据氢键数量、均方根偏差和相互作用能,MD 模拟结果验证了 Flavan-MMP9 和 Germich-TLR4 这两种复合物的结构灵活性。这项研究得出结论,瘘管属植物(二氢堪非醇、黄烷-3-醇)和西洋接骨木属植物(Germichrysone)具有治疗高血压和未来新型药物制剂的潜在治疗活性成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Network pharmacology and molecular docking: combined computational approaches to explore the antihypertensive potential of Fabaceae species.

Network pharmacology and molecular docking: combined computational approaches to explore the antihypertensive potential of Fabaceae species.

Hypertension is a major global public health issue, affecting quarter of adults worldwide. Numerous synthetic drugs are available for treating hypertension; however, they often come with a higher risk of side effects and long-term therapy. Modern formulations with active phytoconstituents are gaining popularity, addressing some of these issues. This study aims to discover novel antihypertensive compounds in Cassia fistula, Senna alexandrina, and Cassia occidentalis from family Fabaceae and understand their interaction mechanism with hypertension targeted genes, using network pharmacology and molecular docking. Total 414 compounds were identified; initial screening was conducted based on their pharmacokinetic and ADMET properties, with a particular emphasis on adherence to Lipinski's rules. 6 compounds, namely Germichrysone, Benzeneacetic acid, Flavan-3-ol, 5,7,3',4'-Tetrahydroxy-6, 8-dimethoxyflavon, Dihydrokaempferol, and Epiafzelechin, were identified as effective agents. Most of the compounds found non-toxic against various indicators with greater bioactivity score. 161 common targets were obtained against these compounds and hypertension followed by compound-target network construction and protein-protein interaction, which showed their role in diverse biological system. Top hub genes identified were TLR4, MMP9, MAPK14, AKT1, VEGFA and HSP90AA1 with their respective associates. Higher binding affinities was found with three compounds Dihydrokaempferol, Flavan-3-ol and Germichrysone, -7.1, -9.0 and -8.0 kcal/mol, respectively. The MD simulation results validate the structural flexibility of two complexes Flavan-MMP9 and Germich-TLR4 based on no. of hydrogen bonds, root mean square deviations and interaction energies. This study concluded that C. fistula (Dihydrokaempferol, Flavan-3-ol) and C. occidentalis (Germichrysone) have potential therapeutic active constituents to treat hypertension and in future novel drug formulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresources and Bioprocessing
Bioresources and Bioprocessing BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
7.20
自引率
8.70%
发文量
118
审稿时长
13 weeks
期刊介绍: Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信