Shuai Yan, Lin Chen, Na Li, Xiaohui Wei, Jingjing Wang, Weiping Dong, Yufan Wang, Jianxia Shi, Xiaoying Ding, Yongde Peng
{"title":"Akkermansia muciniphila 对高脂饮食诱发的糖尿病前期大鼠胰岛β细胞功能的影响","authors":"Shuai Yan, Lin Chen, Na Li, Xiaohui Wei, Jingjing Wang, Weiping Dong, Yufan Wang, Jianxia Shi, Xiaoying Ding, Yongde Peng","doi":"10.1186/s40643-024-00766-4","DOIUrl":null,"url":null,"abstract":"<p><p>Prediabetes is an important stage in the development of diabetes. It is necessary to find a safe, effective and sustainable way to delay and reverse the progression of prediabetes. Akkermansia muciniphila (A. muciniphila) is one of the key bacteria associated with glucose metabolism. Recent studies mainly focus on the effect of A. muciniphila on obesity and insulin resistance, but there is no research on the effect of A. muciniphila on pancreatic β-cell function and its mechanism in prediabetes. In this study, we investigated the effects of A. muciniphila on β-cell function, apoptosis and differentiation, as well as its effects on the gut microbiome, intestinal barrier, metaflammation and the expression of Toll-like receptors (TLRs) in a high-fat diet (HFD)-induced prediabetic rat model. The effect of A. muciniphila was compared with dietary intervention. The results showed both A. muciniphila treatment and dietary intervention can reduce metaflammation by repairing the intestinal barrier in rats with prediabetes induced by an HFD and improve β-cell secretory function, apoptosis and differentiation through signaling pathways mediated by TLR2 and TLR4. Additionally, A. muciniphila can further elevate β-cell secretion, attenuate apoptosis and improve differentiation and the TLR signaling pathway on the basis of diet.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"11 1","pages":"51"},"PeriodicalIF":4.3000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102893/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of Akkermansia muciniphila on pancreatic islet β-cell function in rats with prediabetes mellitus induced by a high-fat diet.\",\"authors\":\"Shuai Yan, Lin Chen, Na Li, Xiaohui Wei, Jingjing Wang, Weiping Dong, Yufan Wang, Jianxia Shi, Xiaoying Ding, Yongde Peng\",\"doi\":\"10.1186/s40643-024-00766-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prediabetes is an important stage in the development of diabetes. It is necessary to find a safe, effective and sustainable way to delay and reverse the progression of prediabetes. Akkermansia muciniphila (A. muciniphila) is one of the key bacteria associated with glucose metabolism. Recent studies mainly focus on the effect of A. muciniphila on obesity and insulin resistance, but there is no research on the effect of A. muciniphila on pancreatic β-cell function and its mechanism in prediabetes. In this study, we investigated the effects of A. muciniphila on β-cell function, apoptosis and differentiation, as well as its effects on the gut microbiome, intestinal barrier, metaflammation and the expression of Toll-like receptors (TLRs) in a high-fat diet (HFD)-induced prediabetic rat model. The effect of A. muciniphila was compared with dietary intervention. The results showed both A. muciniphila treatment and dietary intervention can reduce metaflammation by repairing the intestinal barrier in rats with prediabetes induced by an HFD and improve β-cell secretory function, apoptosis and differentiation through signaling pathways mediated by TLR2 and TLR4. Additionally, A. muciniphila can further elevate β-cell secretion, attenuate apoptosis and improve differentiation and the TLR signaling pathway on the basis of diet.</p>\",\"PeriodicalId\":9067,\"journal\":{\"name\":\"Bioresources and Bioprocessing\",\"volume\":\"11 1\",\"pages\":\"51\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102893/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresources and Bioprocessing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40643-024-00766-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-024-00766-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Effect of Akkermansia muciniphila on pancreatic islet β-cell function in rats with prediabetes mellitus induced by a high-fat diet.
Prediabetes is an important stage in the development of diabetes. It is necessary to find a safe, effective and sustainable way to delay and reverse the progression of prediabetes. Akkermansia muciniphila (A. muciniphila) is one of the key bacteria associated with glucose metabolism. Recent studies mainly focus on the effect of A. muciniphila on obesity and insulin resistance, but there is no research on the effect of A. muciniphila on pancreatic β-cell function and its mechanism in prediabetes. In this study, we investigated the effects of A. muciniphila on β-cell function, apoptosis and differentiation, as well as its effects on the gut microbiome, intestinal barrier, metaflammation and the expression of Toll-like receptors (TLRs) in a high-fat diet (HFD)-induced prediabetic rat model. The effect of A. muciniphila was compared with dietary intervention. The results showed both A. muciniphila treatment and dietary intervention can reduce metaflammation by repairing the intestinal barrier in rats with prediabetes induced by an HFD and improve β-cell secretory function, apoptosis and differentiation through signaling pathways mediated by TLR2 and TLR4. Additionally, A. muciniphila can further elevate β-cell secretion, attenuate apoptosis and improve differentiation and the TLR signaling pathway on the basis of diet.
期刊介绍:
Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology