Suguru Torimitsu, Akari Nakazawa, Ambika Flavel, Lauren Swift, Yohsuke Makino, Hirotaro Iwase, Daniel Franklin
{"title":"根据日本和澳大利亚西部人口的计算机断层扫描图像,利用股骨近端测量值估算人口亲缘关系。","authors":"Suguru Torimitsu, Akari Nakazawa, Ambika Flavel, Lauren Swift, Yohsuke Makino, Hirotaro Iwase, Daniel Franklin","doi":"10.1007/s00414-024-03257-5","DOIUrl":null,"url":null,"abstract":"<p><p>The present study analyzes morphological differences femora of contemporary Japanese and Western Australian individuals and investigates the feasibility of population affinity estimation based on computed tomographic (CT) data. The latter is deemed to be of practical importance because most anthropological methods rely on the assessment of aspects of skull morphology, which when damaged and/or unavailable, often hampers attempts to estimate population affinity. The study sample comprised CT scans of 297 (146 females; 151 males) Japanese and 330 (145 females; 185 males) Western Australian adult individuals. A total of 10 measurements were acquired in two-dimensional CT images of the left and right femora; two machine learning methods (random forest modeling [RFM]) and support vector machine [SVM]) were then applied for population affinity classification. The accuracy of the two-way (sex-specific and sex-mixed) model was between 71.38 and 82.07% and 76.09-86.09% for RFM and SVM, respectively. Sex-specific (female and male) models were slightly more accurate compared to the sex-mixed models; there were no considerable differences in the correct classification rates between the female- and male-specific models. All the classification accuracies were higher in the Western Australian population, except for the male model using SVM. The four-way sex and population affinity model had an overall classification accuracy of 74.96% and 79.11% for RFM and SVM, respectively. The Western Australian females had the lowest correct classification rate followed by the Japanese males. Our data indicate that femoral measurements may be particularly useful for classification of Japanese and Western Australian individuals.</p>","PeriodicalId":14071,"journal":{"name":"International Journal of Legal Medicine","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306720/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimation of population affinity using proximal femoral measurements based on computed tomographic images in the Japanese and western Australian populations.\",\"authors\":\"Suguru Torimitsu, Akari Nakazawa, Ambika Flavel, Lauren Swift, Yohsuke Makino, Hirotaro Iwase, Daniel Franklin\",\"doi\":\"10.1007/s00414-024-03257-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study analyzes morphological differences femora of contemporary Japanese and Western Australian individuals and investigates the feasibility of population affinity estimation based on computed tomographic (CT) data. The latter is deemed to be of practical importance because most anthropological methods rely on the assessment of aspects of skull morphology, which when damaged and/or unavailable, often hampers attempts to estimate population affinity. The study sample comprised CT scans of 297 (146 females; 151 males) Japanese and 330 (145 females; 185 males) Western Australian adult individuals. A total of 10 measurements were acquired in two-dimensional CT images of the left and right femora; two machine learning methods (random forest modeling [RFM]) and support vector machine [SVM]) were then applied for population affinity classification. The accuracy of the two-way (sex-specific and sex-mixed) model was between 71.38 and 82.07% and 76.09-86.09% for RFM and SVM, respectively. Sex-specific (female and male) models were slightly more accurate compared to the sex-mixed models; there were no considerable differences in the correct classification rates between the female- and male-specific models. All the classification accuracies were higher in the Western Australian population, except for the male model using SVM. The four-way sex and population affinity model had an overall classification accuracy of 74.96% and 79.11% for RFM and SVM, respectively. The Western Australian females had the lowest correct classification rate followed by the Japanese males. Our data indicate that femoral measurements may be particularly useful for classification of Japanese and Western Australian individuals.</p>\",\"PeriodicalId\":14071,\"journal\":{\"name\":\"International Journal of Legal Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306720/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Legal Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00414-024-03257-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Legal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00414-024-03257-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
Estimation of population affinity using proximal femoral measurements based on computed tomographic images in the Japanese and western Australian populations.
The present study analyzes morphological differences femora of contemporary Japanese and Western Australian individuals and investigates the feasibility of population affinity estimation based on computed tomographic (CT) data. The latter is deemed to be of practical importance because most anthropological methods rely on the assessment of aspects of skull morphology, which when damaged and/or unavailable, often hampers attempts to estimate population affinity. The study sample comprised CT scans of 297 (146 females; 151 males) Japanese and 330 (145 females; 185 males) Western Australian adult individuals. A total of 10 measurements were acquired in two-dimensional CT images of the left and right femora; two machine learning methods (random forest modeling [RFM]) and support vector machine [SVM]) were then applied for population affinity classification. The accuracy of the two-way (sex-specific and sex-mixed) model was between 71.38 and 82.07% and 76.09-86.09% for RFM and SVM, respectively. Sex-specific (female and male) models were slightly more accurate compared to the sex-mixed models; there were no considerable differences in the correct classification rates between the female- and male-specific models. All the classification accuracies were higher in the Western Australian population, except for the male model using SVM. The four-way sex and population affinity model had an overall classification accuracy of 74.96% and 79.11% for RFM and SVM, respectively. The Western Australian females had the lowest correct classification rate followed by the Japanese males. Our data indicate that femoral measurements may be particularly useful for classification of Japanese and Western Australian individuals.
期刊介绍:
The International Journal of Legal Medicine aims to improve the scientific resources used in the elucidation of crime and related forensic applications at a high level of evidential proof. The journal offers review articles tracing development in specific areas, with up-to-date analysis; original articles discussing significant recent research results; case reports describing interesting and exceptional examples; population data; letters to the editors; and technical notes, which appear in a section originally created for rapid publication of data in the dynamic field of DNA analysis.