Mahdi Zeidi , Suprabha Islam , Chul B. Park , Chun Il Kim
{"title":"用非线性弹性纤维材料增强的超弹性复合材料的伪弹性响应:连续建模与分析","authors":"Mahdi Zeidi , Suprabha Islam , Chul B. Park , Chun Il Kim","doi":"10.1016/j.ijengsci.2024.104092","DOIUrl":null,"url":null,"abstract":"<div><p>The present study aims to develop a continuum-based model to predict the pseudoelastic behavior of biological composites subjected to finite plane elastostatics. The proposed model incorporates a hyperelastic matrix material reinforced with nonlinear fibers, addressing challenges such as irreversible softening responses, large deformations, and nonlinear stress–strain responses. The kinematics of reinforcing fibers are formulated via the first and second gradient of continuum deformations and, more importantly, damage function and damage variables of Ogden–Roxburgh and Weibull type are integrated into the model to assimilate the various aspects of damage mechanisms present in soft tissues. Adopting the framework of variational principles and a virtual work statement, the Euler equation and admissible boundary conditions are obtained. The proposed model successfully predicts the Mullins effect observed in the human aorta and the Manduca muscle. Experimental validation with elastomeric composites demonstrates its utility to replicate softening and fiber damage phenomena, including deformation profiles. Further, the proposed molecular dynamics scheme offers an enhanced understanding of polymer chain entanglement processes, thereby facilitating the quantification of permanent damage in elastomeric composites. The obtained results may provide valuable insight toward understanding and modeling the mechanical behavior of soft biological tissues with practical implications for the design and analysis of biofabricated composites aimed at mimicking biological tissues.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"201 ","pages":"Article 104092"},"PeriodicalIF":5.7000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020722524000764/pdfft?md5=1a3531b5f2ac696ea40059889a47c1d0&pid=1-s2.0-S0020722524000764-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A pseudoelastic response of hyperelastic composites reinforced with nonlinear elastic fibrous materials: Continuum modeling and analysis\",\"authors\":\"Mahdi Zeidi , Suprabha Islam , Chul B. Park , Chun Il Kim\",\"doi\":\"10.1016/j.ijengsci.2024.104092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study aims to develop a continuum-based model to predict the pseudoelastic behavior of biological composites subjected to finite plane elastostatics. The proposed model incorporates a hyperelastic matrix material reinforced with nonlinear fibers, addressing challenges such as irreversible softening responses, large deformations, and nonlinear stress–strain responses. The kinematics of reinforcing fibers are formulated via the first and second gradient of continuum deformations and, more importantly, damage function and damage variables of Ogden–Roxburgh and Weibull type are integrated into the model to assimilate the various aspects of damage mechanisms present in soft tissues. Adopting the framework of variational principles and a virtual work statement, the Euler equation and admissible boundary conditions are obtained. The proposed model successfully predicts the Mullins effect observed in the human aorta and the Manduca muscle. Experimental validation with elastomeric composites demonstrates its utility to replicate softening and fiber damage phenomena, including deformation profiles. Further, the proposed molecular dynamics scheme offers an enhanced understanding of polymer chain entanglement processes, thereby facilitating the quantification of permanent damage in elastomeric composites. The obtained results may provide valuable insight toward understanding and modeling the mechanical behavior of soft biological tissues with practical implications for the design and analysis of biofabricated composites aimed at mimicking biological tissues.</p></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":\"201 \",\"pages\":\"Article 104092\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0020722524000764/pdfft?md5=1a3531b5f2ac696ea40059889a47c1d0&pid=1-s2.0-S0020722524000764-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722524000764\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524000764","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A pseudoelastic response of hyperelastic composites reinforced with nonlinear elastic fibrous materials: Continuum modeling and analysis
The present study aims to develop a continuum-based model to predict the pseudoelastic behavior of biological composites subjected to finite plane elastostatics. The proposed model incorporates a hyperelastic matrix material reinforced with nonlinear fibers, addressing challenges such as irreversible softening responses, large deformations, and nonlinear stress–strain responses. The kinematics of reinforcing fibers are formulated via the first and second gradient of continuum deformations and, more importantly, damage function and damage variables of Ogden–Roxburgh and Weibull type are integrated into the model to assimilate the various aspects of damage mechanisms present in soft tissues. Adopting the framework of variational principles and a virtual work statement, the Euler equation and admissible boundary conditions are obtained. The proposed model successfully predicts the Mullins effect observed in the human aorta and the Manduca muscle. Experimental validation with elastomeric composites demonstrates its utility to replicate softening and fiber damage phenomena, including deformation profiles. Further, the proposed molecular dynamics scheme offers an enhanced understanding of polymer chain entanglement processes, thereby facilitating the quantification of permanent damage in elastomeric composites. The obtained results may provide valuable insight toward understanding and modeling the mechanical behavior of soft biological tissues with practical implications for the design and analysis of biofabricated composites aimed at mimicking biological tissues.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.