哺乳动物子宫接受胎儿植入的分子方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kaiyu KUBOTA
{"title":"哺乳动物子宫接受胎儿植入的分子方法","authors":"Kaiyu KUBOTA","doi":"10.1262/jrd.2024-022","DOIUrl":null,"url":null,"abstract":"</p><p>Mammalian reproduction is more inefficient than expected and embryo/conceptus implantation into the maternal endometrium is considered to be a rate-limiting process. Although extensive physiological and structural diversity exists among mammalian species, the basic molecular mechanisms underlying successful implantation are conserved. The extensive use of genetically engineered mouse models has provided considerable information on uterine receptivity for embryo implantation. The molecular mechanisms and cellular processes identified thus far require further validation in other mammalian species. In this review, representative ovarian steroid hormone-induced signaling pathways controlling uterine adaptation are presented based on the results of rodent studies. Selected examples of functional conservation in mammals, such as humans and cattle, are briefly described. To date, molecular therapeutic trials for fertility improvement have not been conducted. Considerable efforts are required to provide further understanding of these molecular mechanisms. Such understanding will contribute to the development of reliable clinical diagnostics and therapeutics for implantation failure, leading to reproductive success in a wide variety of mammals in the future.</p>\n<p></p>\n<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jrd/advpub/0/advpub_2024-022/figure/advpub_2024-022.png\"/>\nGraphical Abstract <span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular approaches to mammalian uterine receptivity for conceptus implantation\",\"authors\":\"Kaiyu KUBOTA\",\"doi\":\"10.1262/jrd.2024-022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>Mammalian reproduction is more inefficient than expected and embryo/conceptus implantation into the maternal endometrium is considered to be a rate-limiting process. Although extensive physiological and structural diversity exists among mammalian species, the basic molecular mechanisms underlying successful implantation are conserved. The extensive use of genetically engineered mouse models has provided considerable information on uterine receptivity for embryo implantation. The molecular mechanisms and cellular processes identified thus far require further validation in other mammalian species. In this review, representative ovarian steroid hormone-induced signaling pathways controlling uterine adaptation are presented based on the results of rodent studies. Selected examples of functional conservation in mammals, such as humans and cattle, are briefly described. To date, molecular therapeutic trials for fertility improvement have not been conducted. Considerable efforts are required to provide further understanding of these molecular mechanisms. Such understanding will contribute to the development of reliable clinical diagnostics and therapeutics for implantation failure, leading to reproductive success in a wide variety of mammals in the future.</p>\\n<p></p>\\n<img alt=\\\"\\\" src=\\\"https://www.jstage.jst.go.jp/pub/jrd/advpub/0/advpub_2024-022/figure/advpub_2024-022.png\\\"/>\\nGraphical Abstract <span style=\\\"padding-left:5px;\\\">Fullsize Image</span>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1262/jrd.2024-022\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1262/jrd.2024-022","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

哺乳动物的繁殖效率比预期的要低,胚胎/受体植入母体子宫内膜被认为是一个限制繁殖率的过程。尽管哺乳动物物种之间存在广泛的生理和结构差异,但成功植入的基本分子机制是一致的。基因工程小鼠模型的广泛应用为胚胎植入的子宫接受性提供了大量信息。迄今发现的分子机制和细胞过程需要在其他哺乳动物物种中进一步验证。在本综述中,根据啮齿类动物的研究结果,介绍了卵巢类固醇激素诱导的控制子宫适应性的代表性信号通路。此外,还简要介绍了哺乳动物(如人类和牛)功能保护的部分实例。迄今为止,还没有进行过提高生育能力的分子治疗试验。要进一步了解这些分子机制,还需要做出大量努力。这种理解将有助于开发可靠的临床诊断和治疗植入失败的药物,从而在未来使各种哺乳动物获得生殖成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular approaches to mammalian uterine receptivity for conceptus implantation

Mammalian reproduction is more inefficient than expected and embryo/conceptus implantation into the maternal endometrium is considered to be a rate-limiting process. Although extensive physiological and structural diversity exists among mammalian species, the basic molecular mechanisms underlying successful implantation are conserved. The extensive use of genetically engineered mouse models has provided considerable information on uterine receptivity for embryo implantation. The molecular mechanisms and cellular processes identified thus far require further validation in other mammalian species. In this review, representative ovarian steroid hormone-induced signaling pathways controlling uterine adaptation are presented based on the results of rodent studies. Selected examples of functional conservation in mammals, such as humans and cattle, are briefly described. To date, molecular therapeutic trials for fertility improvement have not been conducted. Considerable efforts are required to provide further understanding of these molecular mechanisms. Such understanding will contribute to the development of reliable clinical diagnostics and therapeutics for implantation failure, leading to reproductive success in a wide variety of mammals in the future.

Graphical Abstract Fullsize Image
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信