Ethan A. Scott;Hwijong Lee;John N. Nogan;Don Bethke;Peter A. Sharma;Patrick E. Hopkins;Tzu-Ming Lu;C. Thomas Harris
{"title":"在膜厚度最小化极限下用于热传感应用的悬浮式氮化硅平台","authors":"Ethan A. Scott;Hwijong Lee;John N. Nogan;Don Bethke;Peter A. Sharma;Patrick E. Hopkins;Tzu-Ming Lu;C. Thomas Harris","doi":"10.1109/JMEMS.2024.3392855","DOIUrl":null,"url":null,"abstract":"Silicon nitride has long been employed in the microfabrication of thermal sensors due to its favorable material properties and the ease with which it facilitates surface micromachining. While a variety of studies have utilized thin silicon nitride membranes for high sensitivity thermal measurements, limited reports exist on the physical characteristics of membranes and platforms in a thickness limit much less than 100 nm. Herein, we report on the development of low-stress, suspended silicon nitride platform devices that enable thermal characterization of membranes ranging from 120 nm to less than 10 nm in thickness, providing thermal conductivities as low as 1.1 W m−1 K−1 near room temperature. Applications of these platforms may enable appreciable enhancement in the performance of devices reliant upon environmental thermal isolation including bolometers, calorimeters, and gas sensors, among others. [2024-0003]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 4","pages":"419-426"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suspended Silicon Nitride Platforms for Thermal Sensing Applications in the Limit of Minimized Membrane Thickness\",\"authors\":\"Ethan A. Scott;Hwijong Lee;John N. Nogan;Don Bethke;Peter A. Sharma;Patrick E. Hopkins;Tzu-Ming Lu;C. Thomas Harris\",\"doi\":\"10.1109/JMEMS.2024.3392855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon nitride has long been employed in the microfabrication of thermal sensors due to its favorable material properties and the ease with which it facilitates surface micromachining. While a variety of studies have utilized thin silicon nitride membranes for high sensitivity thermal measurements, limited reports exist on the physical characteristics of membranes and platforms in a thickness limit much less than 100 nm. Herein, we report on the development of low-stress, suspended silicon nitride platform devices that enable thermal characterization of membranes ranging from 120 nm to less than 10 nm in thickness, providing thermal conductivities as low as 1.1 W m−1 K−1 near room temperature. Applications of these platforms may enable appreciable enhancement in the performance of devices reliant upon environmental thermal isolation including bolometers, calorimeters, and gas sensors, among others. [2024-0003]\",\"PeriodicalId\":16621,\"journal\":{\"name\":\"Journal of Microelectromechanical Systems\",\"volume\":\"33 4\",\"pages\":\"419-426\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10531110/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10531110/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Suspended Silicon Nitride Platforms for Thermal Sensing Applications in the Limit of Minimized Membrane Thickness
Silicon nitride has long been employed in the microfabrication of thermal sensors due to its favorable material properties and the ease with which it facilitates surface micromachining. While a variety of studies have utilized thin silicon nitride membranes for high sensitivity thermal measurements, limited reports exist on the physical characteristics of membranes and platforms in a thickness limit much less than 100 nm. Herein, we report on the development of low-stress, suspended silicon nitride platform devices that enable thermal characterization of membranes ranging from 120 nm to less than 10 nm in thickness, providing thermal conductivities as low as 1.1 W m−1 K−1 near room temperature. Applications of these platforms may enable appreciable enhancement in the performance of devices reliant upon environmental thermal isolation including bolometers, calorimeters, and gas sensors, among others. [2024-0003]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.