自主稀疏均值-CVaR 投资组合优化

Yizun Lin, Yangyu Zhang, Zhao-Rong Lai, Cheng Li
{"title":"自主稀疏均值-CVaR 投资组合优化","authors":"Yizun Lin, Yangyu Zhang, Zhao-Rong Lai, Cheng Li","doi":"arxiv-2405.08047","DOIUrl":null,"url":null,"abstract":"The $\\ell_0$-constrained mean-CVaR model poses a significant challenge due to\nits NP-hard nature, typically tackled through combinatorial methods\ncharacterized by high computational demands. From a markedly different\nperspective, we propose an innovative autonomous sparse mean-CVaR portfolio\nmodel, capable of approximating the original $\\ell_0$-constrained mean-CVaR\nmodel with arbitrary accuracy. The core idea is to convert the $\\ell_0$\nconstraint into an indicator function and subsequently handle it through a\ntailed approximation. We then propose a proximal alternating linearized\nminimization algorithm, coupled with a nested fixed-point proximity algorithm\n(both convergent), to iteratively solve the model. Autonomy in sparsity refers\nto retaining a significant portion of assets within the selected asset pool\nduring adjustments in pool size. Consequently, our framework offers a\ntheoretically guaranteed approximation of the $\\ell_0$-constrained mean-CVaR\nmodel, improving computational efficiency while providing a robust asset\nselection scheme.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous Sparse Mean-CVaR Portfolio Optimization\",\"authors\":\"Yizun Lin, Yangyu Zhang, Zhao-Rong Lai, Cheng Li\",\"doi\":\"arxiv-2405.08047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The $\\\\ell_0$-constrained mean-CVaR model poses a significant challenge due to\\nits NP-hard nature, typically tackled through combinatorial methods\\ncharacterized by high computational demands. From a markedly different\\nperspective, we propose an innovative autonomous sparse mean-CVaR portfolio\\nmodel, capable of approximating the original $\\\\ell_0$-constrained mean-CVaR\\nmodel with arbitrary accuracy. The core idea is to convert the $\\\\ell_0$\\nconstraint into an indicator function and subsequently handle it through a\\ntailed approximation. We then propose a proximal alternating linearized\\nminimization algorithm, coupled with a nested fixed-point proximity algorithm\\n(both convergent), to iteratively solve the model. Autonomy in sparsity refers\\nto retaining a significant portion of assets within the selected asset pool\\nduring adjustments in pool size. Consequently, our framework offers a\\ntheoretically guaranteed approximation of the $\\\\ell_0$-constrained mean-CVaR\\nmodel, improving computational efficiency while providing a robust asset\\nselection scheme.\",\"PeriodicalId\":501045,\"journal\":{\"name\":\"arXiv - QuantFin - Portfolio Management\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.08047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.08047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

$\ell_0$约束均值-CVaR模型因其 NP-hard性质而构成重大挑战,通常通过计算要求高的组合方法来解决。我们从一个明显不同的角度提出了一种创新的自主稀疏均值-CVaR组合模型,能够以任意精度逼近原始的 $\ell_0$ 约束均值-CVaR模型。其核心思想是将 $\ell_0$ 约束转换为指标函数,然后通过尾随近似来处理它。然后,我们提出了一种近似交替线性化最小化算法,再加上嵌套定点近似算法(两者都收敛),对模型进行迭代求解。稀疏性自主是指在调整资产池规模时,在选定的资产池中保留相当一部分资产。因此,我们的框架从理论上保证了对 $\ell_0$ 受限均值-CVaR 模型的近似,提高了计算效率,同时提供了一个稳健的资产选择方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous Sparse Mean-CVaR Portfolio Optimization
The $\ell_0$-constrained mean-CVaR model poses a significant challenge due to its NP-hard nature, typically tackled through combinatorial methods characterized by high computational demands. From a markedly different perspective, we propose an innovative autonomous sparse mean-CVaR portfolio model, capable of approximating the original $\ell_0$-constrained mean-CVaR model with arbitrary accuracy. The core idea is to convert the $\ell_0$ constraint into an indicator function and subsequently handle it through a tailed approximation. We then propose a proximal alternating linearized minimization algorithm, coupled with a nested fixed-point proximity algorithm (both convergent), to iteratively solve the model. Autonomy in sparsity refers to retaining a significant portion of assets within the selected asset pool during adjustments in pool size. Consequently, our framework offers a theoretically guaranteed approximation of the $\ell_0$-constrained mean-CVaR model, improving computational efficiency while providing a robust asset selection scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信