化学绽放项目:与公民科学家合作调查植物表皮蜡花的化学多样性和系统发育分布情况

IF 2.3 3区 生物学 Q2 PLANT SCIENCES
Plant Direct Pub Date : 2024-05-17 DOI:10.1002/pld3.588
Le Thanh Dien Nguyen, Nicole Groth, Kylie Mondloch, Edgar B. Cahoon, Keith Jones, Lucas Busta
{"title":"化学绽放项目:与公民科学家合作调查植物表皮蜡花的化学多样性和系统发育分布情况","authors":"Le Thanh Dien Nguyen, Nicole Groth, Kylie Mondloch, Edgar B. Cahoon, Keith Jones, Lucas Busta","doi":"10.1002/pld3.588","DOIUrl":null,"url":null,"abstract":"Plants use chemistry to overcome diverse challenges. A particularly striking chemical trait that some plants possess is the ability to synthesize massive amounts of epicuticular wax that accumulates on the plant's surfaces as a white coating visible to the naked eye. The ability to synthesize basic wax molecules appears to be shared among virtually all land plants, and our knowledge of ubiquitous wax compound synthesis is reasonably advanced. However, the ability to synthesize thick layers of visible epicuticular crystals (“wax blooms”) is restricted to specific lineages, and our knowledge of how wax blooms differ from ubiquitous wax layers is less developed. Here, we recruited the help of citizen scientists and middle school students to survey the wax bloom chemistry of 78 species spanning dicot, monocot, and gymnosperm lineages. Using gas chromatography–mass spectrometry, we found that the major wax classes reported from bulk wax mixtures can be present in wax bloom crystals, with fatty acids, fatty alcohols, and alkanes being present in many species' bloom crystals. In contrast, other compounds including aldehydes, ketones, secondary alcohols, and triterpenoids were present in only a few species' wax bloom crystals. By mapping the 78 wax bloom chemical profiles onto a phylogeny and using phylogenetic comparative analyses, we found that secondary alcohol and triterpenoid‐rich wax blooms were present in lineage‐specific patterns that would not be expected to arise by chance. That finding is consistent with reports that secondary alcohol biosynthesis enzymes are found only in certain lineages but was a surprise for triterpenoids, which are intracellular components in virtually all plant lineages. Thus, our data suggest that a lineage‐specific mechanism other than biosynthesis exists that enables select species to generate triterpenoid‐rich surface wax crystals. Overall, our study outlines a general mode in which research scientists can collaborate with citizen scientists as well as middle and high school classrooms not only to enhance data collection and generate testable hypotheses but also to directly involve classrooms in the scientific process and inspire future STEM workers.","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Project ChemicalBlooms: Collaborating with citizen scientists to survey the chemical diversity and phylogenetic distribution of plant epicuticular wax blooms\",\"authors\":\"Le Thanh Dien Nguyen, Nicole Groth, Kylie Mondloch, Edgar B. Cahoon, Keith Jones, Lucas Busta\",\"doi\":\"10.1002/pld3.588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plants use chemistry to overcome diverse challenges. A particularly striking chemical trait that some plants possess is the ability to synthesize massive amounts of epicuticular wax that accumulates on the plant's surfaces as a white coating visible to the naked eye. The ability to synthesize basic wax molecules appears to be shared among virtually all land plants, and our knowledge of ubiquitous wax compound synthesis is reasonably advanced. However, the ability to synthesize thick layers of visible epicuticular crystals (“wax blooms”) is restricted to specific lineages, and our knowledge of how wax blooms differ from ubiquitous wax layers is less developed. Here, we recruited the help of citizen scientists and middle school students to survey the wax bloom chemistry of 78 species spanning dicot, monocot, and gymnosperm lineages. Using gas chromatography–mass spectrometry, we found that the major wax classes reported from bulk wax mixtures can be present in wax bloom crystals, with fatty acids, fatty alcohols, and alkanes being present in many species' bloom crystals. In contrast, other compounds including aldehydes, ketones, secondary alcohols, and triterpenoids were present in only a few species' wax bloom crystals. By mapping the 78 wax bloom chemical profiles onto a phylogeny and using phylogenetic comparative analyses, we found that secondary alcohol and triterpenoid‐rich wax blooms were present in lineage‐specific patterns that would not be expected to arise by chance. That finding is consistent with reports that secondary alcohol biosynthesis enzymes are found only in certain lineages but was a surprise for triterpenoids, which are intracellular components in virtually all plant lineages. Thus, our data suggest that a lineage‐specific mechanism other than biosynthesis exists that enables select species to generate triterpenoid‐rich surface wax crystals. Overall, our study outlines a general mode in which research scientists can collaborate with citizen scientists as well as middle and high school classrooms not only to enhance data collection and generate testable hypotheses but also to directly involve classrooms in the scientific process and inspire future STEM workers.\",\"PeriodicalId\":20230,\"journal\":{\"name\":\"Plant Direct\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pld3.588\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.588","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

植物利用化学来克服各种挑战。一些植物具有的一个特别显著的化学特性是能够合成大量的表皮蜡,这种蜡会在植物表面积聚成一层肉眼可见的白色涂层。几乎所有陆生植物都具有合成基本蜡分子的能力,我们对普遍蜡化合物合成的了解也相当深入。然而,合成厚层可见表皮结晶("蜡花")的能力仅限于特定的品系,我们对蜡花与普遍蜡层有何不同的了解还不够深入。在此,我们请公民科学家和中学生帮助调查了双子叶植物、单子叶植物和裸子植物的 78 个物种的蜡花化学成分。通过使用气相色谱-质谱分析法,我们发现蜡花晶体中可能存在散装蜡混合物中报告的主要蜡类,其中许多物种的蜡花晶体中都含有脂肪酸、脂肪醇和烷烃。相比之下,其他化合物包括醛、酮、仲醇和三萜类化合物只存在于少数物种的蜡花晶体中。通过将 78 种蜡花的化学特征映射到一个系统发育图上,并利用系统发育比较分析,我们发现富含仲醇和三萜类化合物的蜡花是以特定世系的模式出现的,而这种模式并不是偶然出现的。这一发现与仲醇生物合成酶只存在于某些品系的报道一致,但对三萜类化合物来说却是一个惊喜,因为三萜类化合物几乎是所有植物品系的细胞内成分。因此,我们的数据表明,除了生物合成外,还存在一种特定品系的机制,使某些物种能够生成富含三萜类化合物的表面蜡晶。总之,我们的研究概述了研究科学家与公民科学家以及初高中课堂合作的一般模式,这种合作不仅可以加强数据收集和生成可检验的假设,还可以让课堂直接参与科学过程,激励未来的 STEM工作者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Project ChemicalBlooms: Collaborating with citizen scientists to survey the chemical diversity and phylogenetic distribution of plant epicuticular wax blooms
Plants use chemistry to overcome diverse challenges. A particularly striking chemical trait that some plants possess is the ability to synthesize massive amounts of epicuticular wax that accumulates on the plant's surfaces as a white coating visible to the naked eye. The ability to synthesize basic wax molecules appears to be shared among virtually all land plants, and our knowledge of ubiquitous wax compound synthesis is reasonably advanced. However, the ability to synthesize thick layers of visible epicuticular crystals (“wax blooms”) is restricted to specific lineages, and our knowledge of how wax blooms differ from ubiquitous wax layers is less developed. Here, we recruited the help of citizen scientists and middle school students to survey the wax bloom chemistry of 78 species spanning dicot, monocot, and gymnosperm lineages. Using gas chromatography–mass spectrometry, we found that the major wax classes reported from bulk wax mixtures can be present in wax bloom crystals, with fatty acids, fatty alcohols, and alkanes being present in many species' bloom crystals. In contrast, other compounds including aldehydes, ketones, secondary alcohols, and triterpenoids were present in only a few species' wax bloom crystals. By mapping the 78 wax bloom chemical profiles onto a phylogeny and using phylogenetic comparative analyses, we found that secondary alcohol and triterpenoid‐rich wax blooms were present in lineage‐specific patterns that would not be expected to arise by chance. That finding is consistent with reports that secondary alcohol biosynthesis enzymes are found only in certain lineages but was a surprise for triterpenoids, which are intracellular components in virtually all plant lineages. Thus, our data suggest that a lineage‐specific mechanism other than biosynthesis exists that enables select species to generate triterpenoid‐rich surface wax crystals. Overall, our study outlines a general mode in which research scientists can collaborate with citizen scientists as well as middle and high school classrooms not only to enhance data collection and generate testable hypotheses but also to directly involve classrooms in the scientific process and inspire future STEM workers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Direct
Plant Direct Environmental Science-Ecology
CiteScore
5.00
自引率
3.30%
发文量
101
审稿时长
14 weeks
期刊介绍: Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信