{"title":"海藻酸钠聚接枝(富马酸-聚丙烯酸)/氧化石墨烯水凝胶作为吸附剂去除铬 (VI) 和铅 (II) 的合成、表征和吸附能力","authors":"Hiba Alnasery, Abdolhossein Naseri, Layth Samir Jasim, Sanaz Sajedi-Amin","doi":"10.1007/s13738-024-03037-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study involves the preparation of sodium alginate poly grafted (fumaric acid-polyacrylic acid)/graphene oxide, SA-g-p(FA-AA)/GO hydrogel to explore its potential as a promising adsorbent for water treatment mainly chromium (VI) and lead (II) removal. Prepared adsorbent was characterized by FTIR, TGA, XRD, FESEM, and TEM techniques for exploring the chemical structure, thermal stability, crystallography, surface area and morphology, as well as pore size and distribution of SA-g-p(FA-AA)/GO, respectively. The average size of the prepared nanoparticles was observed to be 78.48 nm. The TEM images exhibit a predominantly spherical shape and heterogeneous. Effect of different physiochemical parameters such as pH, temperature, adsorbent dosage, and contact time was explored for maximum metal adsorption. The results of the study revealed that the maximum adsorption capacity of SA-g-p(FA-AA)/GO (0.045 mg g<sup>−1</sup> for Cr (VI) and 22.371 mg g<sup>−1</sup> for Pb (II)) was achieved under optimized conditions, i.e., adsorbent dose of 0.05 g at 25 °C for pH of 2, 4.5 when contact time of 5 and 100 min was used for Cr(VI) and Pb(II), respectively. Data fits best to the pseudo-second-order kinetic equation revealing the multilayer adsorption of Cr (VI) and Pb (II) ions on the heterogeneous adsorbent surface. Thermodynamically, the process of Cr (VI) and Pb (II) adsorption was non-spontaneous, exothermic and feasible revealing the potential of the prepared adsorbent to be used as an efficient adsorbent for metal removal.</p></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, characterization, and adsorption capacity of sodium alginate poly grafted (fumaric acid-co-polyacrylic acid)/graphene oxide hydrogel as adsorbent for Cr (VI) and Pb (II) removal\",\"authors\":\"Hiba Alnasery, Abdolhossein Naseri, Layth Samir Jasim, Sanaz Sajedi-Amin\",\"doi\":\"10.1007/s13738-024-03037-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study involves the preparation of sodium alginate poly grafted (fumaric acid-polyacrylic acid)/graphene oxide, SA-g-p(FA-AA)/GO hydrogel to explore its potential as a promising adsorbent for water treatment mainly chromium (VI) and lead (II) removal. Prepared adsorbent was characterized by FTIR, TGA, XRD, FESEM, and TEM techniques for exploring the chemical structure, thermal stability, crystallography, surface area and morphology, as well as pore size and distribution of SA-g-p(FA-AA)/GO, respectively. The average size of the prepared nanoparticles was observed to be 78.48 nm. The TEM images exhibit a predominantly spherical shape and heterogeneous. Effect of different physiochemical parameters such as pH, temperature, adsorbent dosage, and contact time was explored for maximum metal adsorption. The results of the study revealed that the maximum adsorption capacity of SA-g-p(FA-AA)/GO (0.045 mg g<sup>−1</sup> for Cr (VI) and 22.371 mg g<sup>−1</sup> for Pb (II)) was achieved under optimized conditions, i.e., adsorbent dose of 0.05 g at 25 °C for pH of 2, 4.5 when contact time of 5 and 100 min was used for Cr(VI) and Pb(II), respectively. Data fits best to the pseudo-second-order kinetic equation revealing the multilayer adsorption of Cr (VI) and Pb (II) ions on the heterogeneous adsorbent surface. Thermodynamically, the process of Cr (VI) and Pb (II) adsorption was non-spontaneous, exothermic and feasible revealing the potential of the prepared adsorbent to be used as an efficient adsorbent for metal removal.</p></div>\",\"PeriodicalId\":676,\"journal\":{\"name\":\"Journal of the Iranian Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Iranian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13738-024-03037-3\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Iranian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13738-024-03037-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis, characterization, and adsorption capacity of sodium alginate poly grafted (fumaric acid-co-polyacrylic acid)/graphene oxide hydrogel as adsorbent for Cr (VI) and Pb (II) removal
This study involves the preparation of sodium alginate poly grafted (fumaric acid-polyacrylic acid)/graphene oxide, SA-g-p(FA-AA)/GO hydrogel to explore its potential as a promising adsorbent for water treatment mainly chromium (VI) and lead (II) removal. Prepared adsorbent was characterized by FTIR, TGA, XRD, FESEM, and TEM techniques for exploring the chemical structure, thermal stability, crystallography, surface area and morphology, as well as pore size and distribution of SA-g-p(FA-AA)/GO, respectively. The average size of the prepared nanoparticles was observed to be 78.48 nm. The TEM images exhibit a predominantly spherical shape and heterogeneous. Effect of different physiochemical parameters such as pH, temperature, adsorbent dosage, and contact time was explored for maximum metal adsorption. The results of the study revealed that the maximum adsorption capacity of SA-g-p(FA-AA)/GO (0.045 mg g−1 for Cr (VI) and 22.371 mg g−1 for Pb (II)) was achieved under optimized conditions, i.e., adsorbent dose of 0.05 g at 25 °C for pH of 2, 4.5 when contact time of 5 and 100 min was used for Cr(VI) and Pb(II), respectively. Data fits best to the pseudo-second-order kinetic equation revealing the multilayer adsorption of Cr (VI) and Pb (II) ions on the heterogeneous adsorbent surface. Thermodynamically, the process of Cr (VI) and Pb (II) adsorption was non-spontaneous, exothermic and feasible revealing the potential of the prepared adsorbent to be used as an efficient adsorbent for metal removal.
期刊介绍:
JICS is an international journal covering general fields of chemistry. JICS welcomes high quality original papers in English dealing with experimental, theoretical and applied research related to all branches of chemistry. These include the fields of analytical, inorganic, organic and physical chemistry as well as the chemical biology area. Review articles discussing specific areas of chemistry of current chemical or biological importance are also published. JICS ensures visibility of your research results to a worldwide audience in science. You are kindly invited to submit your manuscript to the Editor-in-Chief or Regional Editor. All contributions in the form of original papers or short communications will be peer reviewed and published free of charge after acceptance.