Andrzej Wolski, Diego Botelho, David Dunning, Amelia E. Pollard
{"title":"利用机器学习的加速器光束相空间层析成像技术考虑光束线组件的变化","authors":"Andrzej Wolski, Diego Botelho, David Dunning, Amelia E. Pollard","doi":"arxiv-2405.10028","DOIUrl":null,"url":null,"abstract":"We describe a technique for reconstruction of the four-dimensional transverse\nphase space of a beam in an accelerator beamline, taking into account the\npresence of unknown errors on the strengths of magnets used in the data\ncollection. Use of machine learning allows rapid reconstruction of the\nphase-space distribution while at the same time providing estimates of the\nmagnet errors. The technique is demonstrated using experimental data from\nCLARA, an accelerator test facility at Daresbury Laboratory.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerator beam phase space tomography using machine learning to account for variations in beamline components\",\"authors\":\"Andrzej Wolski, Diego Botelho, David Dunning, Amelia E. Pollard\",\"doi\":\"arxiv-2405.10028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a technique for reconstruction of the four-dimensional transverse\\nphase space of a beam in an accelerator beamline, taking into account the\\npresence of unknown errors on the strengths of magnets used in the data\\ncollection. Use of machine learning allows rapid reconstruction of the\\nphase-space distribution while at the same time providing estimates of the\\nmagnet errors. The technique is demonstrated using experimental data from\\nCLARA, an accelerator test facility at Daresbury Laboratory.\",\"PeriodicalId\":501318,\"journal\":{\"name\":\"arXiv - PHYS - Accelerator Physics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Accelerator Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.10028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.10028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accelerator beam phase space tomography using machine learning to account for variations in beamline components
We describe a technique for reconstruction of the four-dimensional transverse
phase space of a beam in an accelerator beamline, taking into account the
presence of unknown errors on the strengths of magnets used in the data
collection. Use of machine learning allows rapid reconstruction of the
phase-space distribution while at the same time providing estimates of the
magnet errors. The technique is demonstrated using experimental data from
CLARA, an accelerator test facility at Daresbury Laboratory.