2018年4月下旬青藏高原上空冷涡的环流背景和成因机制

IF 6.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Duming Gao, Jiangyu Mao, Guoxiong Wu, Yimin Liu
{"title":"2018年4月下旬青藏高原上空冷涡的环流背景和成因机制","authors":"Duming Gao, Jiangyu Mao, Guoxiong Wu, Yimin Liu","doi":"10.1007/s00376-023-3124-4","DOIUrl":null,"url":null,"abstract":"<p>A cold vortex occurred over the northeastern Tibetan Plateau (TP) on 27 April 2018 and subsequently brought excessive rainfall to the spring farming area in southern China when moving eastward. This study investigates the genesis mechanism of the cold TP vortex (TPV) by diagnosing reanalysis data and conducting numerical experiments. Results demonstrate that the cold TPV was generated in a highly baroclinic environment with significant contributions of positive potential vorticity (PV) forcing from the tropopause and diurnal thermodynamic impact from the surface. As a positive PV anomaly in the lower stratosphere moved towards the TP, the PV forcing at the tropopause pushed the tropospheric isentropic surfaces upward, forming isentropic-isplacement ascent and reducing static stability over the TP. The descent of the tropopause over the TP also produced a tropopause folding over the northeastern TP associated with a narrow high-PV column intruding downwards over the TPV genesis site, resulting in ascending air in the free atmosphere. This, in conjunction with the descending air in the valley area during the night, produced air stretching just at the TPV genesis site. Because the surface cooling at night increased the surface static stability, the aforementioned vertical air-stretching thus converted the produced static stability to vertical vorticity. Consequently, the cold TPV was generated over the valley at night.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"219 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circulation Background and Genesis Mechanism of a Cold Vortex over the Tibetan Plateau during Late April 2018\",\"authors\":\"Duming Gao, Jiangyu Mao, Guoxiong Wu, Yimin Liu\",\"doi\":\"10.1007/s00376-023-3124-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A cold vortex occurred over the northeastern Tibetan Plateau (TP) on 27 April 2018 and subsequently brought excessive rainfall to the spring farming area in southern China when moving eastward. This study investigates the genesis mechanism of the cold TP vortex (TPV) by diagnosing reanalysis data and conducting numerical experiments. Results demonstrate that the cold TPV was generated in a highly baroclinic environment with significant contributions of positive potential vorticity (PV) forcing from the tropopause and diurnal thermodynamic impact from the surface. As a positive PV anomaly in the lower stratosphere moved towards the TP, the PV forcing at the tropopause pushed the tropospheric isentropic surfaces upward, forming isentropic-isplacement ascent and reducing static stability over the TP. The descent of the tropopause over the TP also produced a tropopause folding over the northeastern TP associated with a narrow high-PV column intruding downwards over the TPV genesis site, resulting in ascending air in the free atmosphere. This, in conjunction with the descending air in the valley area during the night, produced air stretching just at the TPV genesis site. Because the surface cooling at night increased the surface static stability, the aforementioned vertical air-stretching thus converted the produced static stability to vertical vorticity. Consequently, the cold TPV was generated over the valley at night.</p>\",\"PeriodicalId\":7249,\"journal\":{\"name\":\"Advances in Atmospheric Sciences\",\"volume\":\"219 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00376-023-3124-4\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00376-023-3124-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

2018年4月27日,青藏高原东北部上空出现冷涡,随后东移时给华南春耕地区带来了过量降雨。本研究通过诊断再分析数据和数值试验,研究了青藏高原冷涡的成因机制。结果表明,冷冠状涡旋是在高气压环境下产生的,对流层顶的正位势涡度(PV)强迫和来自地表的昼夜热动力影响对其产生了重要影响。当低层平流层的正潜在涡度异常向对流层顶移动时,对流层顶的潜在涡度强迫将对流层等熵面向上推,形成等熵位移上升,降低了对流层顶的静态稳定性。对流层顶在对流层顶上空的下降也在对流层顶东北部上空产生了对流层顶褶皱,这与对流层顶成因点上空向下侵入的狭窄的高PV柱有关,导致自由大气中的空气上升。这与夜间山谷地区下降的空气一起,正好在冠状病毒生成地点产生了空气伸展。由于夜间地表降温增加了地表静稳性,上述垂直空气伸展将产生的静稳性转化为垂直涡度。因此,夜间在山谷上空产生了冷冠状涡流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Circulation Background and Genesis Mechanism of a Cold Vortex over the Tibetan Plateau during Late April 2018

A cold vortex occurred over the northeastern Tibetan Plateau (TP) on 27 April 2018 and subsequently brought excessive rainfall to the spring farming area in southern China when moving eastward. This study investigates the genesis mechanism of the cold TP vortex (TPV) by diagnosing reanalysis data and conducting numerical experiments. Results demonstrate that the cold TPV was generated in a highly baroclinic environment with significant contributions of positive potential vorticity (PV) forcing from the tropopause and diurnal thermodynamic impact from the surface. As a positive PV anomaly in the lower stratosphere moved towards the TP, the PV forcing at the tropopause pushed the tropospheric isentropic surfaces upward, forming isentropic-isplacement ascent and reducing static stability over the TP. The descent of the tropopause over the TP also produced a tropopause folding over the northeastern TP associated with a narrow high-PV column intruding downwards over the TPV genesis site, resulting in ascending air in the free atmosphere. This, in conjunction with the descending air in the valley area during the night, produced air stretching just at the TPV genesis site. Because the surface cooling at night increased the surface static stability, the aforementioned vertical air-stretching thus converted the produced static stability to vertical vorticity. Consequently, the cold TPV was generated over the valley at night.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Atmospheric Sciences
Advances in Atmospheric Sciences 地学-气象与大气科学
CiteScore
9.30
自引率
5.20%
发文量
154
审稿时长
6 months
期刊介绍: Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines. Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信