Lei Zhao;Chong Yang;Xinyue Zhang;Zhiwei You;Yipeng Lu
{"title":"基于铌酸钾钠的高性能 PMUT 阵列的设计、制造和特性分析","authors":"Lei Zhao;Chong Yang;Xinyue Zhang;Zhiwei You;Yipeng Lu","doi":"10.1109/JMEMS.2024.3395294","DOIUrl":null,"url":null,"abstract":"The demand for high-performance lead-free piezoelectric ultrasound transducers has grown significantly, driven by their applications in implantable, biocompatible medical devices and environmentally friendly consumer electronics. In this study, we present the design, fabrication, and characterization of arrays of lead-free (K, Na)NbO3 (KNN)-based piezoelectric micromechanical ultrasonic transducers (PMUTs) with a center frequency of 4.7 MHz in liquid and 5.85 MHz in air. High-quality KNN thin film (FWHM of 0.32°, \n<inline-formula> <tex-math>$e_{\\mathrm {31,}f}= -12$ </tex-math></inline-formula>\n C/m2, \n<inline-formula> <tex-math>$\\epsilon _{r} =1200$ </tex-math></inline-formula>\n) was deposited via physical vapor deposition (PVD) and patterned using an optimized wet etching process with an oxide layer as a mask. Additionally, we obtained a −6 dB fractional bandwidth of 95.7% through optimizing layer stacks and transducers mutual acoustic impedance based on finite element model (FEM) and lumped element model (LEM) methods. We achieved high transmitting performance of 3.8 kPa/V at 3 cm away from a PMUT super-pixel (with an area of 0.278 mm2, consisting of \n<inline-formula> <tex-math>$3\\times 12$ </tex-math></inline-formula>\n PMUTs). The measured transducer performance is comparable to previous PMUTs based on PZT (lead-included) thin films and demonstrates the potential of KNN-based PMUTs in future advanced applications. [2024-0005]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 4","pages":"438-445"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Fabrication, and Characterization of High-Performance PMUT Arrays Based on Potassium Sodium Niobate\",\"authors\":\"Lei Zhao;Chong Yang;Xinyue Zhang;Zhiwei You;Yipeng Lu\",\"doi\":\"10.1109/JMEMS.2024.3395294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for high-performance lead-free piezoelectric ultrasound transducers has grown significantly, driven by their applications in implantable, biocompatible medical devices and environmentally friendly consumer electronics. In this study, we present the design, fabrication, and characterization of arrays of lead-free (K, Na)NbO3 (KNN)-based piezoelectric micromechanical ultrasonic transducers (PMUTs) with a center frequency of 4.7 MHz in liquid and 5.85 MHz in air. High-quality KNN thin film (FWHM of 0.32°, \\n<inline-formula> <tex-math>$e_{\\\\mathrm {31,}f}= -12$ </tex-math></inline-formula>\\n C/m2, \\n<inline-formula> <tex-math>$\\\\epsilon _{r} =1200$ </tex-math></inline-formula>\\n) was deposited via physical vapor deposition (PVD) and patterned using an optimized wet etching process with an oxide layer as a mask. Additionally, we obtained a −6 dB fractional bandwidth of 95.7% through optimizing layer stacks and transducers mutual acoustic impedance based on finite element model (FEM) and lumped element model (LEM) methods. We achieved high transmitting performance of 3.8 kPa/V at 3 cm away from a PMUT super-pixel (with an area of 0.278 mm2, consisting of \\n<inline-formula> <tex-math>$3\\\\times 12$ </tex-math></inline-formula>\\n PMUTs). The measured transducer performance is comparable to previous PMUTs based on PZT (lead-included) thin films and demonstrates the potential of KNN-based PMUTs in future advanced applications. [2024-0005]\",\"PeriodicalId\":16621,\"journal\":{\"name\":\"Journal of Microelectromechanical Systems\",\"volume\":\"33 4\",\"pages\":\"438-445\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10530334/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10530334/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design, Fabrication, and Characterization of High-Performance PMUT Arrays Based on Potassium Sodium Niobate
The demand for high-performance lead-free piezoelectric ultrasound transducers has grown significantly, driven by their applications in implantable, biocompatible medical devices and environmentally friendly consumer electronics. In this study, we present the design, fabrication, and characterization of arrays of lead-free (K, Na)NbO3 (KNN)-based piezoelectric micromechanical ultrasonic transducers (PMUTs) with a center frequency of 4.7 MHz in liquid and 5.85 MHz in air. High-quality KNN thin film (FWHM of 0.32°,
$e_{\mathrm {31,}f}= -12$
C/m2,
$\epsilon _{r} =1200$
) was deposited via physical vapor deposition (PVD) and patterned using an optimized wet etching process with an oxide layer as a mask. Additionally, we obtained a −6 dB fractional bandwidth of 95.7% through optimizing layer stacks and transducers mutual acoustic impedance based on finite element model (FEM) and lumped element model (LEM) methods. We achieved high transmitting performance of 3.8 kPa/V at 3 cm away from a PMUT super-pixel (with an area of 0.278 mm2, consisting of
$3\times 12$
PMUTs). The measured transducer performance is comparable to previous PMUTs based on PZT (lead-included) thin films and demonstrates the potential of KNN-based PMUTs in future advanced applications. [2024-0005]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.