通过凸优化限定平面图中奇数路径的数量

Pub Date : 2024-05-15 DOI:10.1002/jgt.23120
Asaf Cohen Antonir, Asaf Shapira
{"title":"通过凸优化限定平面图中奇数路径的数量","authors":"Asaf Cohen Antonir,&nbsp;Asaf Shapira","doi":"10.1002/jgt.23120","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n \n <mi>P</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>H</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${N}_{{\\mathscr{P}}}(n,H)$</annotation>\n </semantics></math> denote the maximum number of copies of <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> in an <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertex planar graph. The problem of bounding this function for various graphs <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> has been extensively studied since the 70's. A special case that received a lot of attention recently is when <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> is the path on <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n \n <mi>m</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $2m+1$</annotation>\n </semantics></math> vertices, denoted <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>P</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>m</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${P}_{2m+1}$</annotation>\n </semantics></math>. Our main result in this paper is that\n\n </p><p>This improves upon the previously best known bound by a factor <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>e</mi>\n \n <mi>m</mi>\n </msup>\n </mrow>\n <annotation> ${e}^{m}$</annotation>\n </semantics></math>, which is best possible up to the hidden constant, and makes a significant step toward resolving conjectures of Ghosh et al. and of Cox and Martin. The proof uses graph theoretic arguments together with (simple) arguments from the theory of convex optimization.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23120","citationCount":"0","resultStr":"{\"title\":\"Bounding the number of odd paths in planar graphs via convex optimization\",\"authors\":\"Asaf Cohen Antonir,&nbsp;Asaf Shapira\",\"doi\":\"10.1002/jgt.23120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n \\n <mi>P</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>H</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${N}_{{\\\\mathscr{P}}}(n,H)$</annotation>\\n </semantics></math> denote the maximum number of copies of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> in an <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> vertex planar graph. The problem of bounding this function for various graphs <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> has been extensively studied since the 70's. A special case that received a lot of attention recently is when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> is the path on <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>m</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> $2m+1$</annotation>\\n </semantics></math> vertices, denoted <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>P</mi>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>m</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${P}_{2m+1}$</annotation>\\n </semantics></math>. Our main result in this paper is that\\n\\n </p><p>This improves upon the previously best known bound by a factor <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>e</mi>\\n \\n <mi>m</mi>\\n </msup>\\n </mrow>\\n <annotation> ${e}^{m}$</annotation>\\n </semantics></math>, which is best possible up to the hidden constant, and makes a significant step toward resolving conjectures of Ghosh et al. and of Cox and Martin. The proof uses graph theoretic arguments together with (simple) arguments from the theory of convex optimization.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23120\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

表示顶点平面图中的最大副本数。自上世纪 70 年代以来,人们一直在广泛研究对各种图的这一函数进行约束的问题。最近受到广泛关注的一个特例是,当顶点上的路径为 时,表示为 。我们在本文中的主要结果是:这比之前已知的最佳约束提高了系数 ,这是隐含常数以内的最佳约束,并朝着解决 Ghosh 等人以及 Cox 和 Martin 的猜想迈出了重要一步。证明使用了图论论据和凸优化理论的(简单)论据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Bounding the number of odd paths in planar graphs via convex optimization

Let N P ( n , H ) ${N}_{{\mathscr{P}}}(n,H)$ denote the maximum number of copies of H $H$ in an n $n$ vertex planar graph. The problem of bounding this function for various graphs H $H$ has been extensively studied since the 70's. A special case that received a lot of attention recently is when H $H$ is the path on 2 m + 1 $2m+1$ vertices, denoted P 2 m + 1 ${P}_{2m+1}$ . Our main result in this paper is that

This improves upon the previously best known bound by a factor e m ${e}^{m}$ , which is best possible up to the hidden constant, and makes a significant step toward resolving conjectures of Ghosh et al. and of Cox and Martin. The proof uses graph theoretic arguments together with (simple) arguments from the theory of convex optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信