{"title":"批量片段 RNA 测序(BSR-Seq)与 SNP 基因分型相结合,实现洋葱(Allium cepa L.)抗紫斑病基因的图谱绘制和特征描述","authors":"Jayashree Sahoo, Rukmini Mishra, Raj Kumar Joshi","doi":"10.1007/s11105-024-01466-1","DOIUrl":null,"url":null,"abstract":"<p>The pathogenic fungus, <i>Alternaria porri</i> (Ellis) Cifferi, that causes purple blotch (PB) disease, is a major constraint to production of onion and allied crops worldwide. In the present study, bulk segregant RNA sequencing (BSR-Seq) was used to analyze onion cultivar Arka Kalyan (resistant parent), Agrifound Rose (susceptible parent), and two sets of their bulks (20 homozygous resistant and 20 susceptible) from F<sub>6</sub> RIL population to identify a potential region for resistance to PB. Transcript profiling resulted in 278.08 million clean reads from 8 libraries. Comparative expression analysis revealed 755 differentially expressed genes (DEGs) including 492 upregulated and 263 downregulated sequences. Bulk frequency ratio (BFR) was estimated between resistant and susceptible bulk, and 2963 common SNPs with BFR > 6 were detected on 1439 transcripts. Euclidean distance association analysis identified a 7.3 Mb resistance specific candidate region in the long arm of chromosome 6. Using RNA-Seq, 23 DEGs were reported in the candidate region in chromosome 6, including ACCL_20794 (Chr6: 187,639,724–187,643,297), a disease-resistant protein of the CC-NBS-LRR class, whose expression was elevated in the resistant pools following PB treatment. The ACCL_20794 gene was cloned and based on the sequences from the two parents, a single amino acid mutation—histidine (H) to serine (S) was detected in the resistance genotype Arka Kalyan. Quantitative reverse transcription (qRT)-PCR further demonstrated significantly differential expression of ACCL_20794 in the two parents as well as the RIL bulks. This indicates that ACCL_20794 might be the candidate resistance gene <i>ApR1</i> and is implicated in the PB resistance response.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bulked Segregant RNA Sequencing (BSR-Seq) Combined with SNP Genotyping Towards Mapping and Characterization of a Purple Blotch Resistance Gene in Onion (Allium cepa L.)\",\"authors\":\"Jayashree Sahoo, Rukmini Mishra, Raj Kumar Joshi\",\"doi\":\"10.1007/s11105-024-01466-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The pathogenic fungus, <i>Alternaria porri</i> (Ellis) Cifferi, that causes purple blotch (PB) disease, is a major constraint to production of onion and allied crops worldwide. In the present study, bulk segregant RNA sequencing (BSR-Seq) was used to analyze onion cultivar Arka Kalyan (resistant parent), Agrifound Rose (susceptible parent), and two sets of their bulks (20 homozygous resistant and 20 susceptible) from F<sub>6</sub> RIL population to identify a potential region for resistance to PB. Transcript profiling resulted in 278.08 million clean reads from 8 libraries. Comparative expression analysis revealed 755 differentially expressed genes (DEGs) including 492 upregulated and 263 downregulated sequences. Bulk frequency ratio (BFR) was estimated between resistant and susceptible bulk, and 2963 common SNPs with BFR > 6 were detected on 1439 transcripts. Euclidean distance association analysis identified a 7.3 Mb resistance specific candidate region in the long arm of chromosome 6. Using RNA-Seq, 23 DEGs were reported in the candidate region in chromosome 6, including ACCL_20794 (Chr6: 187,639,724–187,643,297), a disease-resistant protein of the CC-NBS-LRR class, whose expression was elevated in the resistant pools following PB treatment. The ACCL_20794 gene was cloned and based on the sequences from the two parents, a single amino acid mutation—histidine (H) to serine (S) was detected in the resistance genotype Arka Kalyan. Quantitative reverse transcription (qRT)-PCR further demonstrated significantly differential expression of ACCL_20794 in the two parents as well as the RIL bulks. This indicates that ACCL_20794 might be the candidate resistance gene <i>ApR1</i> and is implicated in the PB resistance response.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11105-024-01466-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11105-024-01466-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bulked Segregant RNA Sequencing (BSR-Seq) Combined with SNP Genotyping Towards Mapping and Characterization of a Purple Blotch Resistance Gene in Onion (Allium cepa L.)
The pathogenic fungus, Alternaria porri (Ellis) Cifferi, that causes purple blotch (PB) disease, is a major constraint to production of onion and allied crops worldwide. In the present study, bulk segregant RNA sequencing (BSR-Seq) was used to analyze onion cultivar Arka Kalyan (resistant parent), Agrifound Rose (susceptible parent), and two sets of their bulks (20 homozygous resistant and 20 susceptible) from F6 RIL population to identify a potential region for resistance to PB. Transcript profiling resulted in 278.08 million clean reads from 8 libraries. Comparative expression analysis revealed 755 differentially expressed genes (DEGs) including 492 upregulated and 263 downregulated sequences. Bulk frequency ratio (BFR) was estimated between resistant and susceptible bulk, and 2963 common SNPs with BFR > 6 were detected on 1439 transcripts. Euclidean distance association analysis identified a 7.3 Mb resistance specific candidate region in the long arm of chromosome 6. Using RNA-Seq, 23 DEGs were reported in the candidate region in chromosome 6, including ACCL_20794 (Chr6: 187,639,724–187,643,297), a disease-resistant protein of the CC-NBS-LRR class, whose expression was elevated in the resistant pools following PB treatment. The ACCL_20794 gene was cloned and based on the sequences from the two parents, a single amino acid mutation—histidine (H) to serine (S) was detected in the resistance genotype Arka Kalyan. Quantitative reverse transcription (qRT)-PCR further demonstrated significantly differential expression of ACCL_20794 in the two parents as well as the RIL bulks. This indicates that ACCL_20794 might be the candidate resistance gene ApR1 and is implicated in the PB resistance response.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.