与季节性变化的黑潮反气旋异常有关的厄尔尼诺/南方涛动对中国东部初冬和深冬降水模式的不同影响

IF 6.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Jingrui Yan, Wenjun Zhang, Suqiong Hu, Feng Jiang
{"title":"与季节性变化的黑潮反气旋异常有关的厄尔尼诺/南方涛动对中国东部初冬和深冬降水模式的不同影响","authors":"Jingrui Yan, Wenjun Zhang, Suqiong Hu, Feng Jiang","doi":"10.1007/s00376-023-3196-1","DOIUrl":null,"url":null,"abstract":"<p>Winter precipitation over eastern China displays remarkable interannual variability, which has been suggested to be closely related to El Niño–Southern Oscillation (ENSO). This study finds that ENSO impacts on eastern China precipitation patterns exhibit obvious differences in early (November–December) and late (January–February) winter. In early winter, precipitation anomalies associated with ENSO are characterized by a monopole spatial distribution over eastern China. In contrast, the precipitation anomaly pattern in late winter remarkably changes, manifesting as a dipole spatial distribution. The noteworthy change in precipitation responses from early to late winter can be largely attributed to the seasonally varying Kuroshio anticyclonic anomalies. During the early winter of El Niño years, anticyclonic circulation anomalies appear both over the Philippine Sea and Kuroshio region, enhancing water vapor transport to the entirety of eastern China, thus contributing to more precipitation there. During the late winter of El Niño years, the anticyclone over the Philippine Sea is further strengthened, while the one over the Kuroshio dissipates, which could result in differing water vapor transport between northern and southern parts of eastern China and thus a dipole precipitation distribution. Roughly the opposite anomalies of circulation and precipitation are displayed during La Niña winters. Further analysis suggests that the seasonally-varying Kuroshio anticyclonic anomalies are possibly related to the enhancement of ENSO-related tropical central-eastern Pacific convection from early to late winter. These results have important implications for the seasonal-to-interannual predictability of winter precipitation over eastern China.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"92 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Different ENSO Impacts on Eastern China Precipitation Patterns in Early and Late Winter Associated with Seasonally-Varying Kuroshio Anticyclonic Anomalies\",\"authors\":\"Jingrui Yan, Wenjun Zhang, Suqiong Hu, Feng Jiang\",\"doi\":\"10.1007/s00376-023-3196-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Winter precipitation over eastern China displays remarkable interannual variability, which has been suggested to be closely related to El Niño–Southern Oscillation (ENSO). This study finds that ENSO impacts on eastern China precipitation patterns exhibit obvious differences in early (November–December) and late (January–February) winter. In early winter, precipitation anomalies associated with ENSO are characterized by a monopole spatial distribution over eastern China. In contrast, the precipitation anomaly pattern in late winter remarkably changes, manifesting as a dipole spatial distribution. The noteworthy change in precipitation responses from early to late winter can be largely attributed to the seasonally varying Kuroshio anticyclonic anomalies. During the early winter of El Niño years, anticyclonic circulation anomalies appear both over the Philippine Sea and Kuroshio region, enhancing water vapor transport to the entirety of eastern China, thus contributing to more precipitation there. During the late winter of El Niño years, the anticyclone over the Philippine Sea is further strengthened, while the one over the Kuroshio dissipates, which could result in differing water vapor transport between northern and southern parts of eastern China and thus a dipole precipitation distribution. Roughly the opposite anomalies of circulation and precipitation are displayed during La Niña winters. Further analysis suggests that the seasonally-varying Kuroshio anticyclonic anomalies are possibly related to the enhancement of ENSO-related tropical central-eastern Pacific convection from early to late winter. These results have important implications for the seasonal-to-interannual predictability of winter precipitation over eastern China.</p>\",\"PeriodicalId\":7249,\"journal\":{\"name\":\"Advances in Atmospheric Sciences\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00376-023-3196-1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00376-023-3196-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

中国东部冬季降水的年际变化显著,这被认为与厄尔尼诺-南方涛动(ENSO)密切相关。本研究发现,厄尔尼诺/南方涛动对中国东部降水模式的影响在初冬(11 月至 12 月)和晚冬(1 月至 2 月)表现出明显差异。在初冬,与厄尔尼诺/南方涛动相关的降水异常在华东地区呈单极空间分布特征。相比之下,冬末的降水异常模式发生了显著变化,表现为偶极空间分布。从初冬到深冬降水响应的显著变化主要归因于季节性变化的黑潮反气旋异常。在厄尔尼诺年的初冬,菲律宾海和黑潮地区都出现了反气旋环流异常,增强了向整个华东地区的水汽输送,从而导致当地降水增多。在厄尔尼诺年的冬末,菲律宾海上空的反气旋进一步加强,而黑潮上空的反气旋消散,这可能导致中国东部南北水汽输送的差异,从而形成偶极性降水分布。在拉尼娜冬季,环流和降水的反常现象大致相反。进一步分析表明,黑潮反气旋异常的季节性变化可能与厄尔尼诺/南方涛动相关的热带中东太平洋对流从初冬到晚冬的增强有关。这些结果对中国东部冬季降水的季节-年际可预报性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Different ENSO Impacts on Eastern China Precipitation Patterns in Early and Late Winter Associated with Seasonally-Varying Kuroshio Anticyclonic Anomalies

Winter precipitation over eastern China displays remarkable interannual variability, which has been suggested to be closely related to El Niño–Southern Oscillation (ENSO). This study finds that ENSO impacts on eastern China precipitation patterns exhibit obvious differences in early (November–December) and late (January–February) winter. In early winter, precipitation anomalies associated with ENSO are characterized by a monopole spatial distribution over eastern China. In contrast, the precipitation anomaly pattern in late winter remarkably changes, manifesting as a dipole spatial distribution. The noteworthy change in precipitation responses from early to late winter can be largely attributed to the seasonally varying Kuroshio anticyclonic anomalies. During the early winter of El Niño years, anticyclonic circulation anomalies appear both over the Philippine Sea and Kuroshio region, enhancing water vapor transport to the entirety of eastern China, thus contributing to more precipitation there. During the late winter of El Niño years, the anticyclone over the Philippine Sea is further strengthened, while the one over the Kuroshio dissipates, which could result in differing water vapor transport between northern and southern parts of eastern China and thus a dipole precipitation distribution. Roughly the opposite anomalies of circulation and precipitation are displayed during La Niña winters. Further analysis suggests that the seasonally-varying Kuroshio anticyclonic anomalies are possibly related to the enhancement of ENSO-related tropical central-eastern Pacific convection from early to late winter. These results have important implications for the seasonal-to-interannual predictability of winter precipitation over eastern China.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Atmospheric Sciences
Advances in Atmospheric Sciences 地学-气象与大气科学
CiteScore
9.30
自引率
5.20%
发文量
154
审稿时长
6 months
期刊介绍: Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines. Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信