关于非球体的共线受限四体问题的平衡点

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
H.I. Alrebdi , K.S. Al-mugren , F.L. Dubeibe , M.S. Suraj , E.E. Zotos
{"title":"关于非球体的共线受限四体问题的平衡点","authors":"H.I. Alrebdi ,&nbsp;K.S. Al-mugren ,&nbsp;F.L. Dubeibe ,&nbsp;M.S. Suraj ,&nbsp;E.E. Zotos","doi":"10.1016/j.ascom.2024.100832","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates a variation of the collinear restricted four-body problem, introducing complexity by incorporating the oblate or prolate shapes of the three primary bodies. Employing various numerical techniques, we analyze the dynamical properties of the equilibrium points within the system. In addition to identifying the coordinates of the libration points, we examine their linear stability and dynamic classifications. Our primary focus is on understanding the interplay between the system’s mass and shape parameters, revealing how they collectively influence equilibrium dynamics. Specifically, our results demonstrate that oblate-shaped peripheral bodies consistently produce six (6) equilibrium points, while prolate spheroids yield an even number – 6, 10, 14, or 18 – depending on the specific mass and shape parameters.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"48 ","pages":"Article 100832"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the equilibrium points of the collinear restricted 4-body problem with non-spherical bodies\",\"authors\":\"H.I. Alrebdi ,&nbsp;K.S. Al-mugren ,&nbsp;F.L. Dubeibe ,&nbsp;M.S. Suraj ,&nbsp;E.E. Zotos\",\"doi\":\"10.1016/j.ascom.2024.100832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates a variation of the collinear restricted four-body problem, introducing complexity by incorporating the oblate or prolate shapes of the three primary bodies. Employing various numerical techniques, we analyze the dynamical properties of the equilibrium points within the system. In addition to identifying the coordinates of the libration points, we examine their linear stability and dynamic classifications. Our primary focus is on understanding the interplay between the system’s mass and shape parameters, revealing how they collectively influence equilibrium dynamics. Specifically, our results demonstrate that oblate-shaped peripheral bodies consistently produce six (6) equilibrium points, while prolate spheroids yield an even number – 6, 10, 14, or 18 – depending on the specific mass and shape parameters.</p></div>\",\"PeriodicalId\":48757,\"journal\":{\"name\":\"Astronomy and Computing\",\"volume\":\"48 \",\"pages\":\"Article 100832\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy and Computing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213133724000477\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000477","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了共线受限四体问题的一个变体,通过将三个主天体的扁圆形或长方形形状纳入其中,引入了复杂性。我们采用各种数值技术,分析了系统内平衡点的动力学特性。除了确定平衡点的坐标外,我们还研究了它们的线性稳定性和动态分类。我们的主要重点是了解系统质量和形状参数之间的相互作用,揭示它们如何共同影响平衡动力学。具体来说,我们的研究结果表明,扁球形外围体始终产生六(6)个平衡点,而长球形则产生偶数平衡点--6、10、14 或 18--这取决于具体的质量和形状参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the equilibrium points of the collinear restricted 4-body problem with non-spherical bodies

This study investigates a variation of the collinear restricted four-body problem, introducing complexity by incorporating the oblate or prolate shapes of the three primary bodies. Employing various numerical techniques, we analyze the dynamical properties of the equilibrium points within the system. In addition to identifying the coordinates of the libration points, we examine their linear stability and dynamic classifications. Our primary focus is on understanding the interplay between the system’s mass and shape parameters, revealing how they collectively influence equilibrium dynamics. Specifically, our results demonstrate that oblate-shaped peripheral bodies consistently produce six (6) equilibrium points, while prolate spheroids yield an even number – 6, 10, 14, or 18 – depending on the specific mass and shape parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomy and Computing
Astronomy and Computing ASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍: Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信