Rushita D. Parmar, Vaishali G. Varsani, Vijay Parmar, Suhas Vyas, Dushyant Dudhagara
{"title":"通过生化反应对花生基因型的耐盐性进行多维评估","authors":"Rushita D. Parmar, Vaishali G. Varsani, Vijay Parmar, Suhas Vyas, Dushyant Dudhagara","doi":"10.1016/j.ocsci.2024.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>The manuscript explores the complex interplay between groundnut genotypes, salt tolerance and hormonal influence, shedding light on the dynamic responses of three specific groundnut genotypes, KDG-128, TG-37 A and GG-20, to salt treatments and gibberellic acid (GA<sub>3</sub>). The study encompasses germination, plant growth, total protein content and oil content as key parameters. Through comprehensive analysis, it identifies TG-37 A and KDG-128 as salt-tolerant genotypes, and GG-20 as salt-susceptible genotypes, which highlighting the potential for targeted breeding efforts to develop more resilient groundnut varieties. Moreover, the quantification of protein and oil content under different treatments provides vital data for optimizing nutritional profiles in groundnut cultivars. Principal Component Analysis (PCA) underscores the significance of the first principal component (PC1) in explaining the majority of variance, capturing primary trends and differences in plant length. Analysis of Variance (ANOVA) and hierarchical analysis confirm the presence of statistically significant differences in protein and oil content among the genotypes. Pearson's correlation coefficient matrix analysis reveals strong positive correlations between plant length and protein content, plant length and oil content, and a moderately positive correlation between protein content and oil content. These findings provide valuable insights into groundnut physiology, salt tolerance, and nutritional composition, with implications for future research in sustainable agriculture and crop improvement.</p></div>","PeriodicalId":34095,"journal":{"name":"Oil Crop Science","volume":"9 2","pages":"Pages 102-110"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096242824000228/pdfft?md5=ee26bbb091301989f956210ad3b6e6f8&pid=1-s2.0-S2096242824000228-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multidimensional evaluation of salt tolerance in groundnut genotypes through biochemical responses\",\"authors\":\"Rushita D. Parmar, Vaishali G. Varsani, Vijay Parmar, Suhas Vyas, Dushyant Dudhagara\",\"doi\":\"10.1016/j.ocsci.2024.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The manuscript explores the complex interplay between groundnut genotypes, salt tolerance and hormonal influence, shedding light on the dynamic responses of three specific groundnut genotypes, KDG-128, TG-37 A and GG-20, to salt treatments and gibberellic acid (GA<sub>3</sub>). The study encompasses germination, plant growth, total protein content and oil content as key parameters. Through comprehensive analysis, it identifies TG-37 A and KDG-128 as salt-tolerant genotypes, and GG-20 as salt-susceptible genotypes, which highlighting the potential for targeted breeding efforts to develop more resilient groundnut varieties. Moreover, the quantification of protein and oil content under different treatments provides vital data for optimizing nutritional profiles in groundnut cultivars. Principal Component Analysis (PCA) underscores the significance of the first principal component (PC1) in explaining the majority of variance, capturing primary trends and differences in plant length. Analysis of Variance (ANOVA) and hierarchical analysis confirm the presence of statistically significant differences in protein and oil content among the genotypes. Pearson's correlation coefficient matrix analysis reveals strong positive correlations between plant length and protein content, plant length and oil content, and a moderately positive correlation between protein content and oil content. These findings provide valuable insights into groundnut physiology, salt tolerance, and nutritional composition, with implications for future research in sustainable agriculture and crop improvement.</p></div>\",\"PeriodicalId\":34095,\"journal\":{\"name\":\"Oil Crop Science\",\"volume\":\"9 2\",\"pages\":\"Pages 102-110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2096242824000228/pdfft?md5=ee26bbb091301989f956210ad3b6e6f8&pid=1-s2.0-S2096242824000228-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil Crop Science\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096242824000228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil Crop Science","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096242824000228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
摘要
该手稿探讨了花生基因型、耐盐性和激素影响之间复杂的相互作用,揭示了三种特定花生基因型(KDG-128、TG-37 A 和 GG-20)对盐处理和赤霉素 (GA3) 的动态响应。研究以发芽、植物生长、总蛋白含量和含油量为关键参数。通过综合分析,该研究确定了 TG-37 A 和 KDG-128 为耐盐基因型,GG-20 为感盐基因型,从而突出了有针对性的育种工作的潜力,以开发抗逆性更强的花生品种。此外,不同处理下蛋白质和油含量的量化为优化花生栽培品种的营养成分提供了重要数据。主成分分析(PCA)强调了第一主成分(PC1)在解释大部分方差、捕捉植株长度的主要趋势和差异方面的重要性。方差分析(ANOVA)和层次分析证实,不同基因型之间的蛋白质和油脂含量存在显著的统计学差异。皮尔逊相关系数矩阵分析表明,植株长度与蛋白质含量、植株长度与含油量之间存在较强的正相关关系,蛋白质含量与含油量之间存在中等程度的正相关关系。这些发现为花生的生理、耐盐性和营养成分提供了宝贵的见解,对未来可持续农业研究和作物改良具有重要意义。
Multidimensional evaluation of salt tolerance in groundnut genotypes through biochemical responses
The manuscript explores the complex interplay between groundnut genotypes, salt tolerance and hormonal influence, shedding light on the dynamic responses of three specific groundnut genotypes, KDG-128, TG-37 A and GG-20, to salt treatments and gibberellic acid (GA3). The study encompasses germination, plant growth, total protein content and oil content as key parameters. Through comprehensive analysis, it identifies TG-37 A and KDG-128 as salt-tolerant genotypes, and GG-20 as salt-susceptible genotypes, which highlighting the potential for targeted breeding efforts to develop more resilient groundnut varieties. Moreover, the quantification of protein and oil content under different treatments provides vital data for optimizing nutritional profiles in groundnut cultivars. Principal Component Analysis (PCA) underscores the significance of the first principal component (PC1) in explaining the majority of variance, capturing primary trends and differences in plant length. Analysis of Variance (ANOVA) and hierarchical analysis confirm the presence of statistically significant differences in protein and oil content among the genotypes. Pearson's correlation coefficient matrix analysis reveals strong positive correlations between plant length and protein content, plant length and oil content, and a moderately positive correlation between protein content and oil content. These findings provide valuable insights into groundnut physiology, salt tolerance, and nutritional composition, with implications for future research in sustainable agriculture and crop improvement.