2022 年北太平洋西部的热带气旋活动

IF 2.4 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Xin Huang , Lina Bai , Zifeng Yu , Johnny C.L. Chan , Hui Yu , Jie Tang , Rong Guo , Rijin Wan
{"title":"2022 年北太平洋西部的热带气旋活动","authors":"Xin Huang ,&nbsp;Lina Bai ,&nbsp;Zifeng Yu ,&nbsp;Johnny C.L. Chan ,&nbsp;Hui Yu ,&nbsp;Jie Tang ,&nbsp;Rong Guo ,&nbsp;Rijin Wan","doi":"10.1016/j.tcrr.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the best-track dataset from the Shanghai Typhoon Institute/China Meteorological Administration, the paper provides a comprehensive summary and analysis of tropical cyclone (TC) activities in the Western North Pacific (WNP) and the South China Sea (SCS) for 2022. Using the historical climatology from 1951 to 2020, the anomalous conditions during 2022 in TC frequency, origin locations, tracks, intensity, and duration for the entire ocean basin as well as landfall events in China are examined. Results show that the overall TC frequency is slightly lower than normal, but the multiple TC events have a very high frequency of occurrence. Origin locations of TCs, which mark the starting points of their paths, show a large westward and northward deviation from climatology. Around 40% of the named TCs exhibit a shift in their direction of movement from westerly to easterly. Additionally, comparisons of the means, medians, upper and lower quartiles all indicate that the intensity of TCs in 2022 is generally lower than the climatology, with the duration of TCs at tropical storm intensity or above being shorter than usual. A notable observation is the fewer incidence of TC landfalls in China, but with a geographical concentration in Guangdong Province. These anomalous annual TC activities are influenced by related atmospheric and oceanic environmental conditions modulated by multi-scale climate variability. The findings provide useful information for enhancing disaster mitigation strategies in the Asia-Pacific region.</p></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2225603224000262/pdfft?md5=a22976f260cd4d270fb950f36b07b050&pid=1-s2.0-S2225603224000262-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tropical cyclone activities in the Western North Pacific in 2022\",\"authors\":\"Xin Huang ,&nbsp;Lina Bai ,&nbsp;Zifeng Yu ,&nbsp;Johnny C.L. Chan ,&nbsp;Hui Yu ,&nbsp;Jie Tang ,&nbsp;Rong Guo ,&nbsp;Rijin Wan\",\"doi\":\"10.1016/j.tcrr.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on the best-track dataset from the Shanghai Typhoon Institute/China Meteorological Administration, the paper provides a comprehensive summary and analysis of tropical cyclone (TC) activities in the Western North Pacific (WNP) and the South China Sea (SCS) for 2022. Using the historical climatology from 1951 to 2020, the anomalous conditions during 2022 in TC frequency, origin locations, tracks, intensity, and duration for the entire ocean basin as well as landfall events in China are examined. Results show that the overall TC frequency is slightly lower than normal, but the multiple TC events have a very high frequency of occurrence. Origin locations of TCs, which mark the starting points of their paths, show a large westward and northward deviation from climatology. Around 40% of the named TCs exhibit a shift in their direction of movement from westerly to easterly. Additionally, comparisons of the means, medians, upper and lower quartiles all indicate that the intensity of TCs in 2022 is generally lower than the climatology, with the duration of TCs at tropical storm intensity or above being shorter than usual. A notable observation is the fewer incidence of TC landfalls in China, but with a geographical concentration in Guangdong Province. These anomalous annual TC activities are influenced by related atmospheric and oceanic environmental conditions modulated by multi-scale climate variability. The findings provide useful information for enhancing disaster mitigation strategies in the Asia-Pacific region.</p></div>\",\"PeriodicalId\":44442,\"journal\":{\"name\":\"Tropical Cyclone Research and Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2225603224000262/pdfft?md5=a22976f260cd4d270fb950f36b07b050&pid=1-s2.0-S2225603224000262-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Cyclone Research and Review\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2225603224000262\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603224000262","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文基于上海台风研究所/中国气象局的最佳路径数据集,对 2022 年北太平洋西部和南海的热带气旋活动进行了全面总结和分析。利用 1951 年至 2020 年的历史气候资料,研究了 2022 年整个海盆的热带气旋频率、起源地点、路径、强度和持续时间以及登陆中国的热带气旋事件的异常情况。结果表明,热带气旋的总体发生频率略低于常年,但多次热带气旋事件的发生频率非常高。作为其路径起点的热气旋的起源位置显示出较大的偏西和偏北偏差。约 40% 已命名的热气旋的移动方向从偏西转向偏东。此外,平均值、中位数、上四分位数和下四分位数的比较都表明,2022 年的热带气旋强度普遍低于气候资料,热带风暴强度或以上的热带气旋持续时间也比常年短。值得注意的是,登陆中国的热带气旋较少,但主要集中在广东省。这些反常的年度热带气旋活动受相关大气和海洋环境条件的影响,并受多尺度气候变率的调节。研究结果为加强亚太地区的减灾战略提供了有用信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tropical cyclone activities in the Western North Pacific in 2022

Based on the best-track dataset from the Shanghai Typhoon Institute/China Meteorological Administration, the paper provides a comprehensive summary and analysis of tropical cyclone (TC) activities in the Western North Pacific (WNP) and the South China Sea (SCS) for 2022. Using the historical climatology from 1951 to 2020, the anomalous conditions during 2022 in TC frequency, origin locations, tracks, intensity, and duration for the entire ocean basin as well as landfall events in China are examined. Results show that the overall TC frequency is slightly lower than normal, but the multiple TC events have a very high frequency of occurrence. Origin locations of TCs, which mark the starting points of their paths, show a large westward and northward deviation from climatology. Around 40% of the named TCs exhibit a shift in their direction of movement from westerly to easterly. Additionally, comparisons of the means, medians, upper and lower quartiles all indicate that the intensity of TCs in 2022 is generally lower than the climatology, with the duration of TCs at tropical storm intensity or above being shorter than usual. A notable observation is the fewer incidence of TC landfalls in China, but with a geographical concentration in Guangdong Province. These anomalous annual TC activities are influenced by related atmospheric and oceanic environmental conditions modulated by multi-scale climate variability. The findings provide useful information for enhancing disaster mitigation strategies in the Asia-Pacific region.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tropical Cyclone Research and Review
Tropical Cyclone Research and Review METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
3.40%
发文量
184
审稿时长
30 weeks
期刊介绍: Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome. Scope of the journal includes: • Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies • Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings • Basic theoretical studies of tropical cyclones • Event reports, compelling images, and topic review reports of tropical cyclones • Impacts, risk assessments, and risk management techniques related to tropical cyclones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信