Huabin Yu , Haomiao Wang , Xiaoyue Wang , Hongshuai Lei , Xiaogang Guo
{"title":"具有高热机械稳定性的超材料及其作为微波天线的实际应用:机械设计、理论预测和实验演示","authors":"Huabin Yu , Haomiao Wang , Xiaoyue Wang , Hongshuai Lei , Xiaogang Guo","doi":"10.1016/j.eml.2024.102166","DOIUrl":null,"url":null,"abstract":"<div><p>To address the demand of maintaining the structural configuration upon extreme temperature changes, metamaterials with high thermal-mechanical stability have attracted wide attention recently. However, there are still some challenges for previous studies regarding mechanical design and practical application exploration. This manuscript proposes the design strategy for the lattice sandwich metamaterial with excellent zero thermal-induced warping, along with the metamaterial-based antenna with a high stability of electromagnetic signal transmission. Through the design strategy of discrete lattice units of the metamaterial, the ultra-low thermal warping of the metamaterial is realized upon the non-uniform temperature field. Here, the theoretical model is established to predict both heat transfer and thermal-induced deformation behavior upon complex mechanical-thermal loading conditions. The combination of theoretical predictions, finite element analysis, and experiments verifies the thermal dimensional stability of the metamaterial proposed here. Compared with the heterogeneous bilayer plate, experimental thermal warping of the metamaterial specimen is reduced by 99.7%. Additionally, compared with the bilayer-based specimen, gain attenuation, the main lobe's offset angle, and the voltage standing wave ratio offset of the metamaterial-based antenna specimen are experimentally reduced by 99.5%, 99.9% and 74.2%, revealing the huge application potential of this metamaterial in the field of spacecraft communication.</p></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"69 ","pages":"Article 102166"},"PeriodicalIF":4.3000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The metamaterial with high thermal-mechanical stability and the practical application as the microwave antenna: Mechanical designs, theoretical predictions, and experimental demonstrations\",\"authors\":\"Huabin Yu , Haomiao Wang , Xiaoyue Wang , Hongshuai Lei , Xiaogang Guo\",\"doi\":\"10.1016/j.eml.2024.102166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To address the demand of maintaining the structural configuration upon extreme temperature changes, metamaterials with high thermal-mechanical stability have attracted wide attention recently. However, there are still some challenges for previous studies regarding mechanical design and practical application exploration. This manuscript proposes the design strategy for the lattice sandwich metamaterial with excellent zero thermal-induced warping, along with the metamaterial-based antenna with a high stability of electromagnetic signal transmission. Through the design strategy of discrete lattice units of the metamaterial, the ultra-low thermal warping of the metamaterial is realized upon the non-uniform temperature field. Here, the theoretical model is established to predict both heat transfer and thermal-induced deformation behavior upon complex mechanical-thermal loading conditions. The combination of theoretical predictions, finite element analysis, and experiments verifies the thermal dimensional stability of the metamaterial proposed here. Compared with the heterogeneous bilayer plate, experimental thermal warping of the metamaterial specimen is reduced by 99.7%. Additionally, compared with the bilayer-based specimen, gain attenuation, the main lobe's offset angle, and the voltage standing wave ratio offset of the metamaterial-based antenna specimen are experimentally reduced by 99.5%, 99.9% and 74.2%, revealing the huge application potential of this metamaterial in the field of spacecraft communication.</p></div>\",\"PeriodicalId\":56247,\"journal\":{\"name\":\"Extreme Mechanics Letters\",\"volume\":\"69 \",\"pages\":\"Article 102166\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extreme Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352431624000464\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431624000464","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The metamaterial with high thermal-mechanical stability and the practical application as the microwave antenna: Mechanical designs, theoretical predictions, and experimental demonstrations
To address the demand of maintaining the structural configuration upon extreme temperature changes, metamaterials with high thermal-mechanical stability have attracted wide attention recently. However, there are still some challenges for previous studies regarding mechanical design and practical application exploration. This manuscript proposes the design strategy for the lattice sandwich metamaterial with excellent zero thermal-induced warping, along with the metamaterial-based antenna with a high stability of electromagnetic signal transmission. Through the design strategy of discrete lattice units of the metamaterial, the ultra-low thermal warping of the metamaterial is realized upon the non-uniform temperature field. Here, the theoretical model is established to predict both heat transfer and thermal-induced deformation behavior upon complex mechanical-thermal loading conditions. The combination of theoretical predictions, finite element analysis, and experiments verifies the thermal dimensional stability of the metamaterial proposed here. Compared with the heterogeneous bilayer plate, experimental thermal warping of the metamaterial specimen is reduced by 99.7%. Additionally, compared with the bilayer-based specimen, gain attenuation, the main lobe's offset angle, and the voltage standing wave ratio offset of the metamaterial-based antenna specimen are experimentally reduced by 99.5%, 99.9% and 74.2%, revealing the huge application potential of this metamaterial in the field of spacecraft communication.
期刊介绍:
Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.