{"title":"通过等温锻造同步提高电子束焊接 Ti600/Ti2AlNb 接头的强度和电导率","authors":"Yongqiang Zhang , Xiangyi Xue , Guoming Zheng , Jingli Zhang , Huiming Li , Shewei Xin","doi":"10.1016/j.pnsc.2024.04.012","DOIUrl":null,"url":null,"abstract":"<div><p>Different alloys can be flexibly combined to meet the performance needs of different parts of the compressor disc by welding process. However, achieving a good combination of dissimilar alloys with different mechanical properties has always been a research difficulty. In this work, a Ti600/Ti<sub>2</sub>AlNb joint was fabricated through electron beam welding and an isothermal forging was used to optimized its microstructure and mechanical performance. The isothermal forging process increases the ultimate tensile strength (UST) and yield strength (YS) of the Ti600/Ti<sub>2</sub>AlNb joint by ∼18 %, while ∼2.5 times the ductility. It is indicated that before forging, the Ti600/Ti<sub>2</sub>AlNb joint exhibits a much lower strength than that of Ti600 matrix, whereas the opposite is true after isothermal forging. The isothermal forging broken the coarse columnar grains of Ti600/Ti<sub>2</sub>AlNb joint and render to an equiaxed B2 structure in which the acicular α<sub>2</sub> and O phase are precipitated, resulting a synchronous enhancement of strength and ductility. This work may pave an effective routine for improving the comprehensive mechanical properties of dissimilar metal welding joint.</p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving strength-ductility synchronously of Electron beam welded Ti600/Ti2AlNb joint through isothermal forging\",\"authors\":\"Yongqiang Zhang , Xiangyi Xue , Guoming Zheng , Jingli Zhang , Huiming Li , Shewei Xin\",\"doi\":\"10.1016/j.pnsc.2024.04.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Different alloys can be flexibly combined to meet the performance needs of different parts of the compressor disc by welding process. However, achieving a good combination of dissimilar alloys with different mechanical properties has always been a research difficulty. In this work, a Ti600/Ti<sub>2</sub>AlNb joint was fabricated through electron beam welding and an isothermal forging was used to optimized its microstructure and mechanical performance. The isothermal forging process increases the ultimate tensile strength (UST) and yield strength (YS) of the Ti600/Ti<sub>2</sub>AlNb joint by ∼18 %, while ∼2.5 times the ductility. It is indicated that before forging, the Ti600/Ti<sub>2</sub>AlNb joint exhibits a much lower strength than that of Ti600 matrix, whereas the opposite is true after isothermal forging. The isothermal forging broken the coarse columnar grains of Ti600/Ti<sub>2</sub>AlNb joint and render to an equiaxed B2 structure in which the acicular α<sub>2</sub> and O phase are precipitated, resulting a synchronous enhancement of strength and ductility. This work may pave an effective routine for improving the comprehensive mechanical properties of dissimilar metal welding joint.</p></div>\",\"PeriodicalId\":20742,\"journal\":{\"name\":\"Progress in Natural Science: Materials International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Natural Science: Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002007124001035\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124001035","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Improving strength-ductility synchronously of Electron beam welded Ti600/Ti2AlNb joint through isothermal forging
Different alloys can be flexibly combined to meet the performance needs of different parts of the compressor disc by welding process. However, achieving a good combination of dissimilar alloys with different mechanical properties has always been a research difficulty. In this work, a Ti600/Ti2AlNb joint was fabricated through electron beam welding and an isothermal forging was used to optimized its microstructure and mechanical performance. The isothermal forging process increases the ultimate tensile strength (UST) and yield strength (YS) of the Ti600/Ti2AlNb joint by ∼18 %, while ∼2.5 times the ductility. It is indicated that before forging, the Ti600/Ti2AlNb joint exhibits a much lower strength than that of Ti600 matrix, whereas the opposite is true after isothermal forging. The isothermal forging broken the coarse columnar grains of Ti600/Ti2AlNb joint and render to an equiaxed B2 structure in which the acicular α2 and O phase are precipitated, resulting a synchronous enhancement of strength and ductility. This work may pave an effective routine for improving the comprehensive mechanical properties of dissimilar metal welding joint.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.