Lu Xu , Yuetong Qi , Shaolei He , Chengzhi Wang , Xin Jin , Qize Wang , Kai Wang , Pengkang Jin
{"title":"掺硼多孔生物炭的简易合成,作为无金属吸附剂高效去除水体中的四环素类抗生素","authors":"Lu Xu , Yuetong Qi , Shaolei He , Chengzhi Wang , Xin Jin , Qize Wang , Kai Wang , Pengkang Jin","doi":"10.1016/j.jes.2024.04.044","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduced a microwave-assisted pyrolysis method for the rapid and efficient preparation of boron-doped porous biochar. The resulting biochar exhibited a large specific surface area (933.39 m<sup>2</sup>/g), a rich porous structure (1.044 cm<sup>3</sup>/g), and abundant active sites. Consequently, the prepared boron-doped porous biochar exhibited higher efficiency in adsorbing tetracycline with a maximum adsorption capacity of 413.223 mg/g, which significantly exceeded that of unmodified biochar and most commercial and reported adsorbents. The correlation analysis between the adsorption capacity and adsorbent characteristics revealed that the formation of the –BCO<sub>2</sub> group enhanced π–π electron donor–acceptor interactions between boron-doped porous biochar and tetracycline. This mechanism mainly contributed to the enhanced adsorption of tetracycline by boron-doped porous biochar. Additionally, the as-prepared boron-doped porous biochar exhibited broad applications in removing antibiotics (tetracycline), phenolics (bisphenol A), and dyes (methylene blue and rhodamine B). Moreover, the boron-doped porous biochar exhibited satisfactory stability, and its adsorption capacity can be nearly completely regenerated through simple heat treatment. This study provides new insights into the effectiveness of boron-doped carbonaceous materials in removing antibiotic contaminants.</p></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile synthesis of boron-doped porous biochar as a metal-free adsorbent for efficient removal of aqueous tetracycline antibiotics\",\"authors\":\"Lu Xu , Yuetong Qi , Shaolei He , Chengzhi Wang , Xin Jin , Qize Wang , Kai Wang , Pengkang Jin\",\"doi\":\"10.1016/j.jes.2024.04.044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study introduced a microwave-assisted pyrolysis method for the rapid and efficient preparation of boron-doped porous biochar. The resulting biochar exhibited a large specific surface area (933.39 m<sup>2</sup>/g), a rich porous structure (1.044 cm<sup>3</sup>/g), and abundant active sites. Consequently, the prepared boron-doped porous biochar exhibited higher efficiency in adsorbing tetracycline with a maximum adsorption capacity of 413.223 mg/g, which significantly exceeded that of unmodified biochar and most commercial and reported adsorbents. The correlation analysis between the adsorption capacity and adsorbent characteristics revealed that the formation of the –BCO<sub>2</sub> group enhanced π–π electron donor–acceptor interactions between boron-doped porous biochar and tetracycline. This mechanism mainly contributed to the enhanced adsorption of tetracycline by boron-doped porous biochar. Additionally, the as-prepared boron-doped porous biochar exhibited broad applications in removing antibiotics (tetracycline), phenolics (bisphenol A), and dyes (methylene blue and rhodamine B). Moreover, the boron-doped porous biochar exhibited satisfactory stability, and its adsorption capacity can be nearly completely regenerated through simple heat treatment. This study provides new insights into the effectiveness of boron-doped carbonaceous materials in removing antibiotic contaminants.</p></div>\",\"PeriodicalId\":15788,\"journal\":{\"name\":\"Journal of Environmental Sciences-china\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Sciences-china\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001074224002304\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224002304","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Facile synthesis of boron-doped porous biochar as a metal-free adsorbent for efficient removal of aqueous tetracycline antibiotics
This study introduced a microwave-assisted pyrolysis method for the rapid and efficient preparation of boron-doped porous biochar. The resulting biochar exhibited a large specific surface area (933.39 m2/g), a rich porous structure (1.044 cm3/g), and abundant active sites. Consequently, the prepared boron-doped porous biochar exhibited higher efficiency in adsorbing tetracycline with a maximum adsorption capacity of 413.223 mg/g, which significantly exceeded that of unmodified biochar and most commercial and reported adsorbents. The correlation analysis between the adsorption capacity and adsorbent characteristics revealed that the formation of the –BCO2 group enhanced π–π electron donor–acceptor interactions between boron-doped porous biochar and tetracycline. This mechanism mainly contributed to the enhanced adsorption of tetracycline by boron-doped porous biochar. Additionally, the as-prepared boron-doped porous biochar exhibited broad applications in removing antibiotics (tetracycline), phenolics (bisphenol A), and dyes (methylene blue and rhodamine B). Moreover, the boron-doped porous biochar exhibited satisfactory stability, and its adsorption capacity can be nearly completely regenerated through simple heat treatment. This study provides new insights into the effectiveness of boron-doped carbonaceous materials in removing antibiotic contaminants.
期刊介绍:
The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.