{"title":"向列液晶系统中的分子蜕变机制和多态性调控","authors":"L. Bezhanova, M. Vasilyan, A. Atanesyan","doi":"10.1088/1748-0221/19/05/c05016","DOIUrl":null,"url":null,"abstract":"\n The study explores the application of catastrophe theory to describe the molecular mechanisms of smectisation and the regulation of polymorphism in nematic liquid crystal (NLC) systems. We propose a new approach for describing the stable and unstable states of NLC systems that induce the smectic (Sm) phase. A relation between the control variables of the cusp catastrophe and the Sm order parameter in NLC systems has been identified. The equilibrium states of the Sm phase are determined within the framework of catastrophe theory. By applying catastrophe theory to study the thermodynamic potential of an NLC system, we provide a detailed description of how the functional potential geometry changes depending on the control variables. The local geometry around the extremes of the functional thermodynamic potential allows for controllable catastrophes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular mechanism of smectisation and regulation of polymorphism in nematic liquid crystal systems\",\"authors\":\"L. Bezhanova, M. Vasilyan, A. Atanesyan\",\"doi\":\"10.1088/1748-0221/19/05/c05016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The study explores the application of catastrophe theory to describe the molecular mechanisms of smectisation and the regulation of polymorphism in nematic liquid crystal (NLC) systems. We propose a new approach for describing the stable and unstable states of NLC systems that induce the smectic (Sm) phase. A relation between the control variables of the cusp catastrophe and the Sm order parameter in NLC systems has been identified. The equilibrium states of the Sm phase are determined within the framework of catastrophe theory. By applying catastrophe theory to study the thermodynamic potential of an NLC system, we provide a detailed description of how the functional potential geometry changes depending on the control variables. The local geometry around the extremes of the functional thermodynamic potential allows for controllable catastrophes.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-0221/19/05/c05016\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-0221/19/05/c05016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本研究探讨了如何应用灾难理论来描述向列液晶 (NLC) 系统中的蜕变和多态性调控的分子机制。我们提出了一种新的方法来描述 NLC 系统中诱导 Smectic(Sm)相的稳定和不稳定状态。我们确定了 NLC 系统中尖顶灾难控制变量与 Sm 阶参数之间的关系。在灾变理论框架内确定了 Sm 相的平衡态。通过应用灾变理论研究 NLC 系统的热力学势,我们详细描述了功能势几何如何随控制变量的变化而变化。功能热力学势极端附近的局部几何形状允许发生可控的灾变。
Molecular mechanism of smectisation and regulation of polymorphism in nematic liquid crystal systems
The study explores the application of catastrophe theory to describe the molecular mechanisms of smectisation and the regulation of polymorphism in nematic liquid crystal (NLC) systems. We propose a new approach for describing the stable and unstable states of NLC systems that induce the smectic (Sm) phase. A relation between the control variables of the cusp catastrophe and the Sm order parameter in NLC systems has been identified. The equilibrium states of the Sm phase are determined within the framework of catastrophe theory. By applying catastrophe theory to study the thermodynamic potential of an NLC system, we provide a detailed description of how the functional potential geometry changes depending on the control variables. The local geometry around the extremes of the functional thermodynamic potential allows for controllable catastrophes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.