{"title":"MicroRNA-24 通过靶向 Wnt 家族成员 4/Dvl-1/β-Catenin 信号通路对心肌梗死后大鼠心肌纤维化的影响","authors":"Zhenhui Qi, Ling Tong, Jinxi Huang, Qingfeng Su","doi":"10.1166/jbn.2024.3821","DOIUrl":null,"url":null,"abstract":"In this study, we investigated the impact of miR-24 on myocardial fibrosis severity in rats following myocardial infarction (MI) and explored its underlying mechanisms. We established an MI-induced myocardial fibrosis rat model and assessed cardiac function via echocardiography. We\n employed Western blotting and RT-qPCR to examine the effects of agomiR-24 on key fibrotic markers, including COL1A1, COL3A1, and α-SMA. Microarray analysis, pathway enrichment, and proteinprotein interaction network analysis revealed the signaling pathways and genes influenced\n by agomiR-24. Primary rat cardiac fibroblasts (CFs) were isolated, and miR-24’s direct target was confirmed using luciferase reporter assays. We modulated miR-24 expression in CFs and assessed cell proliferation and invasion through CCK-8 and Transwell assays, respectively. Furthermore,\n we investigated the impact of miR-24 on the Wnt4/Dvl-1/β-catenin signaling pathway by Western blotting. Finally, we examined mRNA expression levels of key genes (Cyclin D1, p27, p21, MMP-3, and MMP-9) through RT-qPCR. Our findings demonstrated that agomiR-24 improved cardiac function\n and reduced fibrotic marker expression in rat myocardial tissues. MiR-24 inhibited CF proliferation and invasion, potentially by targeting Wnt4/Dvl-1/β- catenin signaling. It also regulated mRNA expression of genes associated with cell proliferation and matrix remodeling. Overall,\n our study suggests that miR-24 may attenuate myocardial fibrosis in post-MI rats by suppressing the Wnt4/Dvl- 1/β-catenin pathway.","PeriodicalId":15260,"journal":{"name":"Journal of biomedical nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of MicroRNA-24 on Myocardial Fibrosis in Rats After Myocardial Infarction by Targeting Wnt Family Member 4/Dvl-1/β-Catenin Signaling Pathway\",\"authors\":\"Zhenhui Qi, Ling Tong, Jinxi Huang, Qingfeng Su\",\"doi\":\"10.1166/jbn.2024.3821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigated the impact of miR-24 on myocardial fibrosis severity in rats following myocardial infarction (MI) and explored its underlying mechanisms. We established an MI-induced myocardial fibrosis rat model and assessed cardiac function via echocardiography. We\\n employed Western blotting and RT-qPCR to examine the effects of agomiR-24 on key fibrotic markers, including COL1A1, COL3A1, and α-SMA. Microarray analysis, pathway enrichment, and proteinprotein interaction network analysis revealed the signaling pathways and genes influenced\\n by agomiR-24. Primary rat cardiac fibroblasts (CFs) were isolated, and miR-24’s direct target was confirmed using luciferase reporter assays. We modulated miR-24 expression in CFs and assessed cell proliferation and invasion through CCK-8 and Transwell assays, respectively. Furthermore,\\n we investigated the impact of miR-24 on the Wnt4/Dvl-1/β-catenin signaling pathway by Western blotting. Finally, we examined mRNA expression levels of key genes (Cyclin D1, p27, p21, MMP-3, and MMP-9) through RT-qPCR. Our findings demonstrated that agomiR-24 improved cardiac function\\n and reduced fibrotic marker expression in rat myocardial tissues. MiR-24 inhibited CF proliferation and invasion, potentially by targeting Wnt4/Dvl-1/β- catenin signaling. It also regulated mRNA expression of genes associated with cell proliferation and matrix remodeling. Overall,\\n our study suggests that miR-24 may attenuate myocardial fibrosis in post-MI rats by suppressing the Wnt4/Dvl- 1/β-catenin pathway.\",\"PeriodicalId\":15260,\"journal\":{\"name\":\"Journal of biomedical nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1166/jbn.2024.3821\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jbn.2024.3821","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Effects of MicroRNA-24 on Myocardial Fibrosis in Rats After Myocardial Infarction by Targeting Wnt Family Member 4/Dvl-1/β-Catenin Signaling Pathway
In this study, we investigated the impact of miR-24 on myocardial fibrosis severity in rats following myocardial infarction (MI) and explored its underlying mechanisms. We established an MI-induced myocardial fibrosis rat model and assessed cardiac function via echocardiography. We
employed Western blotting and RT-qPCR to examine the effects of agomiR-24 on key fibrotic markers, including COL1A1, COL3A1, and α-SMA. Microarray analysis, pathway enrichment, and proteinprotein interaction network analysis revealed the signaling pathways and genes influenced
by agomiR-24. Primary rat cardiac fibroblasts (CFs) were isolated, and miR-24’s direct target was confirmed using luciferase reporter assays. We modulated miR-24 expression in CFs and assessed cell proliferation and invasion through CCK-8 and Transwell assays, respectively. Furthermore,
we investigated the impact of miR-24 on the Wnt4/Dvl-1/β-catenin signaling pathway by Western blotting. Finally, we examined mRNA expression levels of key genes (Cyclin D1, p27, p21, MMP-3, and MMP-9) through RT-qPCR. Our findings demonstrated that agomiR-24 improved cardiac function
and reduced fibrotic marker expression in rat myocardial tissues. MiR-24 inhibited CF proliferation and invasion, potentially by targeting Wnt4/Dvl-1/β- catenin signaling. It also regulated mRNA expression of genes associated with cell proliferation and matrix remodeling. Overall,
our study suggests that miR-24 may attenuate myocardial fibrosis in post-MI rats by suppressing the Wnt4/Dvl- 1/β-catenin pathway.