{"title":"散点数据插值产生的多线性系统的可扩展优化方法","authors":"Yannan Chen, Kaidong Fu, Can Li and Qi Ye","doi":"10.4208/csiam-am.so-2023-0045","DOIUrl":null,"url":null,"abstract":". Scattered data interpolation aims to reconstruct a continuous (smooth) function that approximates the underlying function by fitting (meshless) data points. There are extensive applications of scattered data interpolation in computer graphics, fluid dynamics, inverse kinematics, machine learning, etc. In this paper, we consider a novel generalized Mercel kernel in the reproducing kernel Banach space for scattered data interpolation. The system of interpolation equations is formulated as a multilinear sys-tem with a structural tensor, which is an absolutely and uniformly convergent infinite series of symmetric rank-one tensors. Then we design a fast numerical method for computing the product of the structural tensor and any vector in arbitrary precision. Whereafter, a scalable optimization approach equipped with limited-memory BFGS and Wolfe line-search techniques is customized for solving these multilinear systems. Using the Łojasiewicz inequality, we prove that the proposed scalable optimization approach is a globally convergent algorithm and possesses a linear or sublinear convergence rate. Numerical experiments illustrate that the proposed scalable optimization approach can improve the accuracy of interpolation fitting and computational efficiency.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Scalable Optimization Approach for the Multilinear System Arising from Scattered Data Interpolation\",\"authors\":\"Yannan Chen, Kaidong Fu, Can Li and Qi Ye\",\"doi\":\"10.4208/csiam-am.so-2023-0045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Scattered data interpolation aims to reconstruct a continuous (smooth) function that approximates the underlying function by fitting (meshless) data points. There are extensive applications of scattered data interpolation in computer graphics, fluid dynamics, inverse kinematics, machine learning, etc. In this paper, we consider a novel generalized Mercel kernel in the reproducing kernel Banach space for scattered data interpolation. The system of interpolation equations is formulated as a multilinear sys-tem with a structural tensor, which is an absolutely and uniformly convergent infinite series of symmetric rank-one tensors. Then we design a fast numerical method for computing the product of the structural tensor and any vector in arbitrary precision. Whereafter, a scalable optimization approach equipped with limited-memory BFGS and Wolfe line-search techniques is customized for solving these multilinear systems. Using the Łojasiewicz inequality, we prove that the proposed scalable optimization approach is a globally convergent algorithm and possesses a linear or sublinear convergence rate. Numerical experiments illustrate that the proposed scalable optimization approach can improve the accuracy of interpolation fitting and computational efficiency.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/csiam-am.so-2023-0045\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/csiam-am.so-2023-0045","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Scalable Optimization Approach for the Multilinear System Arising from Scattered Data Interpolation
. Scattered data interpolation aims to reconstruct a continuous (smooth) function that approximates the underlying function by fitting (meshless) data points. There are extensive applications of scattered data interpolation in computer graphics, fluid dynamics, inverse kinematics, machine learning, etc. In this paper, we consider a novel generalized Mercel kernel in the reproducing kernel Banach space for scattered data interpolation. The system of interpolation equations is formulated as a multilinear sys-tem with a structural tensor, which is an absolutely and uniformly convergent infinite series of symmetric rank-one tensors. Then we design a fast numerical method for computing the product of the structural tensor and any vector in arbitrary precision. Whereafter, a scalable optimization approach equipped with limited-memory BFGS and Wolfe line-search techniques is customized for solving these multilinear systems. Using the Łojasiewicz inequality, we prove that the proposed scalable optimization approach is a globally convergent algorithm and possesses a linear or sublinear convergence rate. Numerical experiments illustrate that the proposed scalable optimization approach can improve the accuracy of interpolation fitting and computational efficiency.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.