基于分数离散时间随机增强 CoVid-19 模型的卡尔曼滤波器

Q1 Social Sciences
Mohammad Ghani, Dwi Rantini, Maryamah
{"title":"基于分数离散时间随机增强 CoVid-19 模型的卡尔曼滤波器","authors":"Mohammad Ghani,&nbsp;Dwi Rantini,&nbsp;Maryamah","doi":"10.1016/j.jobb.2024.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the dynamics of the CoVid-19 outbreak in Semarang, Indonesia, using a fractional CoVid-19 model. We first determine the effects of the isolation rate <span><math><mrow><mi>∊</mi></mrow></math></span> and infection rate <span><math><mrow><mi>β</mi></mrow></math></span> on the reproduction number <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> and infected number <em>V</em>. We find that <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> is directly proportional to <span><math><mrow><mi>β</mi></mrow></math></span> and inversely proportional to <span><math><mrow><mi>∊</mi></mrow></math></span>. For <em>V</em>, the effect of physical distancing is not as significant as changing <span><math><mrow><mi>∊</mi></mrow></math></span>. As <span><math><mrow><mi>∊</mi></mrow></math></span> increases, <em>V</em> decreases, the number of susceptible individuals increases, the number of quarantined individuals decreases sharply, and the number of recovered individuals decreases. Moreover, the effect of vaccination is also considered. The combination of physical distancing, isolation, and vaccination has a significant impact on reducing the number of infected individuals. Analysis of dynamical systems allows us to understand the characteristics of our model, such as its boundedness and non-negativity, the existence of equilibrium points, the existence and uniqueness of solutions, and the local and global stability. To validate our fractional CoVid-19 model, we introduce the fractional extended Kalman filter (FracEKF) as a prediction method and compare the results against reported CoVid-19 data. FracEKF is a modified version of the basic extended Kalman filter with a time-fractional memory effect. The prediction results illustrate the accuracy of this model in terms of the root mean square error (<em>RMSE</em>), normalized root mean square error (<em>NRMSE</em>), and mean absolute percentage error (<em>MAPE</em>) for each fractional-order. Varying <span><math><mrow><mi>∊</mi></mrow></math></span> reproduces the trends observed in the reported data for the number of infected individuals, i.e., when <span><math><mrow><mi>∊</mi></mrow></math></span> increases, the infected number decreases. Moreover, a higher fractional-order results in higher model accuracy. Furthermore, higher values of the process noise <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></math></span> give smaller errors, whereas higher values of the observation noise <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></math></span> produce higher errors. <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></math></span> and the fractional-order <span><math><mrow><mi>α</mi></mrow></math></span> are inversely proportional to <span><math><mrow><mi>RMSE</mi><mo>,</mo><mi>NRMSE</mi></mrow></math></span>, and <em>MAPE</em>, whereas <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></math></span> is directly proportional to <span><math><mrow><mi>RMSE</mi><mo>,</mo><mi>NRMSE</mi></mrow></math></span>, and <em>MAPE</em>.</p></div>","PeriodicalId":52875,"journal":{"name":"Journal of Biosafety and Biosecurity","volume":"6 2","pages":"Pages 76-98"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588933824000189/pdfft?md5=2065ed2bd4837d3db0e2355e9ccfeaa7&pid=1-s2.0-S2588933824000189-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Kalman filter based on a fractional discrete-time stochastic augmented CoVid-19 model\",\"authors\":\"Mohammad Ghani,&nbsp;Dwi Rantini,&nbsp;Maryamah\",\"doi\":\"10.1016/j.jobb.2024.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the dynamics of the CoVid-19 outbreak in Semarang, Indonesia, using a fractional CoVid-19 model. We first determine the effects of the isolation rate <span><math><mrow><mi>∊</mi></mrow></math></span> and infection rate <span><math><mrow><mi>β</mi></mrow></math></span> on the reproduction number <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> and infected number <em>V</em>. We find that <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> is directly proportional to <span><math><mrow><mi>β</mi></mrow></math></span> and inversely proportional to <span><math><mrow><mi>∊</mi></mrow></math></span>. For <em>V</em>, the effect of physical distancing is not as significant as changing <span><math><mrow><mi>∊</mi></mrow></math></span>. As <span><math><mrow><mi>∊</mi></mrow></math></span> increases, <em>V</em> decreases, the number of susceptible individuals increases, the number of quarantined individuals decreases sharply, and the number of recovered individuals decreases. Moreover, the effect of vaccination is also considered. The combination of physical distancing, isolation, and vaccination has a significant impact on reducing the number of infected individuals. Analysis of dynamical systems allows us to understand the characteristics of our model, such as its boundedness and non-negativity, the existence of equilibrium points, the existence and uniqueness of solutions, and the local and global stability. To validate our fractional CoVid-19 model, we introduce the fractional extended Kalman filter (FracEKF) as a prediction method and compare the results against reported CoVid-19 data. FracEKF is a modified version of the basic extended Kalman filter with a time-fractional memory effect. The prediction results illustrate the accuracy of this model in terms of the root mean square error (<em>RMSE</em>), normalized root mean square error (<em>NRMSE</em>), and mean absolute percentage error (<em>MAPE</em>) for each fractional-order. Varying <span><math><mrow><mi>∊</mi></mrow></math></span> reproduces the trends observed in the reported data for the number of infected individuals, i.e., when <span><math><mrow><mi>∊</mi></mrow></math></span> increases, the infected number decreases. Moreover, a higher fractional-order results in higher model accuracy. Furthermore, higher values of the process noise <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></math></span> give smaller errors, whereas higher values of the observation noise <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></math></span> produce higher errors. <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></math></span> and the fractional-order <span><math><mrow><mi>α</mi></mrow></math></span> are inversely proportional to <span><math><mrow><mi>RMSE</mi><mo>,</mo><mi>NRMSE</mi></mrow></math></span>, and <em>MAPE</em>, whereas <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></math></span> is directly proportional to <span><math><mrow><mi>RMSE</mi><mo>,</mo><mi>NRMSE</mi></mrow></math></span>, and <em>MAPE</em>.</p></div>\",\"PeriodicalId\":52875,\"journal\":{\"name\":\"Journal of Biosafety and Biosecurity\",\"volume\":\"6 2\",\"pages\":\"Pages 76-98\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2588933824000189/pdfft?md5=2065ed2bd4837d3db0e2355e9ccfeaa7&pid=1-s2.0-S2588933824000189-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biosafety and Biosecurity\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588933824000189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biosafety and Biosecurity","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588933824000189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本文使用分数 CoVid-19 模型研究了印度尼西亚三宝垄 CoVid-19 爆发的动态。我们首先确定了隔离率 ∊ 和感染率 β 对繁殖数 R0 和感染数 V 的影响。对于 V 而言,物理距离的影响不如改变∊那么显著。随着 ∊ 的增大,V 会减小,易感个体的数量会增加,隔离个体的数量会急剧下降,康复个体的数量会减少。此外,还考虑了疫苗接种的影响。物理距离、隔离和接种疫苗的组合对减少受感染个体的数量有显著影响。通过对动力系统的分析,我们可以了解模型的特点,如其有界性和非负性、平衡点的存在性、解的存在性和唯一性以及局部和全局稳定性。为了验证我们的分数 CoVid-19 模型,我们引入了分数扩展卡尔曼滤波器(FracEKF)作为预测方法,并将结果与报告的 CoVid-19 数据进行比较。FracEKF 是基本扩展卡尔曼滤波器的改进版,具有时间分数记忆效应。预测结果表明了该模型在每个分阶的均方根误差 (RMSE)、归一化均方根误差 (NRMSE) 和平均绝对百分比误差 (MAPE) 方面的准确性。∊的变化再现了报告数据中观察到的受感染个体数量趋势,即当∊增加时,受感染个体数量减少。此外,分数阶越高,模型精度越高。此外,过程噪声 Qf 值越高,误差越小,而观测噪声 Rf 值越高,误差越大。Qf 和分阶 α 与 RMSE、NRMSE 和 MAPE 成反比,而 Rf 与 RMSE、NRMSE 和 MAPE 成正比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kalman filter based on a fractional discrete-time stochastic augmented CoVid-19 model

In this paper, we study the dynamics of the CoVid-19 outbreak in Semarang, Indonesia, using a fractional CoVid-19 model. We first determine the effects of the isolation rate and infection rate β on the reproduction number R0 and infected number V. We find that R0 is directly proportional to β and inversely proportional to . For V, the effect of physical distancing is not as significant as changing . As increases, V decreases, the number of susceptible individuals increases, the number of quarantined individuals decreases sharply, and the number of recovered individuals decreases. Moreover, the effect of vaccination is also considered. The combination of physical distancing, isolation, and vaccination has a significant impact on reducing the number of infected individuals. Analysis of dynamical systems allows us to understand the characteristics of our model, such as its boundedness and non-negativity, the existence of equilibrium points, the existence and uniqueness of solutions, and the local and global stability. To validate our fractional CoVid-19 model, we introduce the fractional extended Kalman filter (FracEKF) as a prediction method and compare the results against reported CoVid-19 data. FracEKF is a modified version of the basic extended Kalman filter with a time-fractional memory effect. The prediction results illustrate the accuracy of this model in terms of the root mean square error (RMSE), normalized root mean square error (NRMSE), and mean absolute percentage error (MAPE) for each fractional-order. Varying reproduces the trends observed in the reported data for the number of infected individuals, i.e., when increases, the infected number decreases. Moreover, a higher fractional-order results in higher model accuracy. Furthermore, higher values of the process noise Qf give smaller errors, whereas higher values of the observation noise Rf produce higher errors. Qf and the fractional-order α are inversely proportional to RMSE,NRMSE, and MAPE, whereas Rf is directly proportional to RMSE,NRMSE, and MAPE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biosafety and Biosecurity
Journal of Biosafety and Biosecurity Social Sciences-Linguistics and Language
CiteScore
6.00
自引率
0.00%
发文量
20
审稿时长
41 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信