{"title":"基于模型的滑动模式控制,用于数字阀阵列驱动的比例阀的智能分布","authors":"","doi":"10.1016/j.isatra.2024.05.027","DOIUrl":null,"url":null,"abstract":"<div><p>Parallel-connected digital valve arrays are commonly utilized in the pilot stage of the proportional directional valve to enhance dynamic performance and reliability. However, when the digital valve array is driven by a digital signal, it is difficult to optimally assign the signal pulses to each valve. If the assignment is not well executed, it can significantly reduce the switching uniformity of the digital valves or lead to performance degradation of the system. In this paper, a model-based sliding mode control strategy based on the intelligent distribution of control law is proposed and successfully applied to a proportional valve driven by digital valve arrays. The intelligent distribution strategy encompasses a logic distribution algorithm and a circular sliding distribution algorithm that automatically assigns control laws to different valves based on the rolling of the PWM signal cycle. Experimental results confirm that the proposed strategy not only simultaneously reduces the total number of valve switches and enhances the switching uniformity among the valves, but also adapts to the variation in the number of valves. The proposed strategy is not limited to the application of digital valve arrays, it is also applicable in other fields of multi-actuators driven by digital signals, and can simultaneously improve the control accuracy, lifetime, and maintenance friendliness.</p></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"151 ","pages":"Pages 312-323"},"PeriodicalIF":6.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model-based sliding mode control with intelligent distribution for a proportional valve driven by digital valve arrays\",\"authors\":\"\",\"doi\":\"10.1016/j.isatra.2024.05.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Parallel-connected digital valve arrays are commonly utilized in the pilot stage of the proportional directional valve to enhance dynamic performance and reliability. However, when the digital valve array is driven by a digital signal, it is difficult to optimally assign the signal pulses to each valve. If the assignment is not well executed, it can significantly reduce the switching uniformity of the digital valves or lead to performance degradation of the system. In this paper, a model-based sliding mode control strategy based on the intelligent distribution of control law is proposed and successfully applied to a proportional valve driven by digital valve arrays. The intelligent distribution strategy encompasses a logic distribution algorithm and a circular sliding distribution algorithm that automatically assigns control laws to different valves based on the rolling of the PWM signal cycle. Experimental results confirm that the proposed strategy not only simultaneously reduces the total number of valve switches and enhances the switching uniformity among the valves, but also adapts to the variation in the number of valves. The proposed strategy is not limited to the application of digital valve arrays, it is also applicable in other fields of multi-actuators driven by digital signals, and can simultaneously improve the control accuracy, lifetime, and maintenance friendliness.</p></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"151 \",\"pages\":\"Pages 312-323\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824002301\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824002301","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A model-based sliding mode control with intelligent distribution for a proportional valve driven by digital valve arrays
Parallel-connected digital valve arrays are commonly utilized in the pilot stage of the proportional directional valve to enhance dynamic performance and reliability. However, when the digital valve array is driven by a digital signal, it is difficult to optimally assign the signal pulses to each valve. If the assignment is not well executed, it can significantly reduce the switching uniformity of the digital valves or lead to performance degradation of the system. In this paper, a model-based sliding mode control strategy based on the intelligent distribution of control law is proposed and successfully applied to a proportional valve driven by digital valve arrays. The intelligent distribution strategy encompasses a logic distribution algorithm and a circular sliding distribution algorithm that automatically assigns control laws to different valves based on the rolling of the PWM signal cycle. Experimental results confirm that the proposed strategy not only simultaneously reduces the total number of valve switches and enhances the switching uniformity among the valves, but also adapts to the variation in the number of valves. The proposed strategy is not limited to the application of digital valve arrays, it is also applicable in other fields of multi-actuators driven by digital signals, and can simultaneously improve the control accuracy, lifetime, and maintenance friendliness.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.