针对嗜极 RNA 聚合酶的高特异性适配体陷阱。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ivan Petushkov , Andrey Feklistov , Andrey Kulbachinskiy
{"title":"针对嗜极 RNA 聚合酶的高特异性适配体陷阱。","authors":"Ivan Petushkov ,&nbsp;Andrey Feklistov ,&nbsp;Andrey Kulbachinskiy","doi":"10.1016/j.biochi.2024.05.014","DOIUrl":null,"url":null,"abstract":"<div><p>During transcription initiation, the holoenzyme of bacterial RNA polymerase (RNAP) specifically recognizes promoters using a dedicated σ factor. During transcription elongation, the core enzyme of RNAP interacts with nucleic acids mainly nonspecifically, by stably locking the DNA template and RNA transcript inside the main cleft. Here, we present a synthetic DNA aptamer that is specifically recognized by both core and holoenzyme RNAPs from extremophilic bacteria of the <em>Deinococcus-Thermus</em> phylum. The aptamer binds RNAP with subnanomolar affinities, forming extremely stable complexes even at high ionic strength conditions, blocks RNAP interactions with the DNA template and inhibits RNAP activity during transcription elongation. We propose that the aptamer binds at a conserved site within the downstream DNA-binding cleft of RNAP and traps it in an inactive conformation. The aptamer can potentially be used for structural studies to reveal RNAP conformational states, affinity binding of RNAP and associated factors, and screening of transcriptional inhibitors.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly specific aptamer trap for extremophilic RNA polymerases\",\"authors\":\"Ivan Petushkov ,&nbsp;Andrey Feklistov ,&nbsp;Andrey Kulbachinskiy\",\"doi\":\"10.1016/j.biochi.2024.05.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>During transcription initiation, the holoenzyme of bacterial RNA polymerase (RNAP) specifically recognizes promoters using a dedicated σ factor. During transcription elongation, the core enzyme of RNAP interacts with nucleic acids mainly nonspecifically, by stably locking the DNA template and RNA transcript inside the main cleft. Here, we present a synthetic DNA aptamer that is specifically recognized by both core and holoenzyme RNAPs from extremophilic bacteria of the <em>Deinococcus-Thermus</em> phylum. The aptamer binds RNAP with subnanomolar affinities, forming extremely stable complexes even at high ionic strength conditions, blocks RNAP interactions with the DNA template and inhibits RNAP activity during transcription elongation. We propose that the aptamer binds at a conserved site within the downstream DNA-binding cleft of RNAP and traps it in an inactive conformation. The aptamer can potentially be used for structural studies to reveal RNAP conformational states, affinity binding of RNAP and associated factors, and screening of transcriptional inhibitors.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300908424001160\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300908424001160","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在转录启动过程中,细菌 RNA 聚合酶(RNAP)的全酶利用专用的 σ 因子特异性地识别启动子。在转录延伸过程中,RNAP 的核心酶主要通过将 DNA 模板和 RNA 转录本稳定地锁定在主裂隙内与核酸进行非特异性相互作用。在这里,我们展示了一种合成的DNA适配体,这种适配体能被来自嗜极细菌门(Deinococcus-Thermus)的核心和全酶RNAP特异性识别。这种适配体能以亚纳摩尔级的亲和力与 RNAP 结合,即使在高离子强度条件下也能形成极其稳定的复合物,阻断 RNAP 与 DNA 模板的相互作用,并在转录延伸过程中抑制 RNAP 的活性。我们认为,该配合物与 RNAP 下游 DNA 结合裂隙中的一个保守位点结合,并使其处于非活性构象。这种适配体可用于结构研究以揭示 RNAP 的构象状态、RNAP 与相关因子的亲和结合以及转录抑制剂的筛选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly specific aptamer trap for extremophilic RNA polymerases

During transcription initiation, the holoenzyme of bacterial RNA polymerase (RNAP) specifically recognizes promoters using a dedicated σ factor. During transcription elongation, the core enzyme of RNAP interacts with nucleic acids mainly nonspecifically, by stably locking the DNA template and RNA transcript inside the main cleft. Here, we present a synthetic DNA aptamer that is specifically recognized by both core and holoenzyme RNAPs from extremophilic bacteria of the Deinococcus-Thermus phylum. The aptamer binds RNAP with subnanomolar affinities, forming extremely stable complexes even at high ionic strength conditions, blocks RNAP interactions with the DNA template and inhibits RNAP activity during transcription elongation. We propose that the aptamer binds at a conserved site within the downstream DNA-binding cleft of RNAP and traps it in an inactive conformation. The aptamer can potentially be used for structural studies to reveal RNAP conformational states, affinity binding of RNAP and associated factors, and screening of transcriptional inhibitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信