卢宾-塔特 (φ,Γ )- 模块的解析同调的有限性

Pub Date : 2024-05-17 DOI:10.1016/j.jnt.2024.04.008
Rustam Steingart
{"title":"卢宾-塔特 (φ,Γ )- 模块的解析同调的有限性","authors":"Rustam Steingart","doi":"10.1016/j.jnt.2024.04.008","DOIUrl":null,"url":null,"abstract":"<div><p>We prove finiteness and base change properties for analytic cohomology of families of <em>L</em>-analytic <span><math><mo>(</mo><msub><mrow><mi>φ</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>)</mo></math></span>-modules parametrised by affinoid algebras in the sense of Tate. For technical reasons we work over a field <em>K</em> containing a period of the Lubin-Tate group, which allows us to describe analytic cohomology in terms of an explicit generalised Herr complex.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001069/pdfft?md5=5b405688ee583a7ed6173f26b09c8258&pid=1-s2.0-S0022314X24001069-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Finiteness of analytic cohomology of Lubin-Tate (φL,ΓL)-modules\",\"authors\":\"Rustam Steingart\",\"doi\":\"10.1016/j.jnt.2024.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove finiteness and base change properties for analytic cohomology of families of <em>L</em>-analytic <span><math><mo>(</mo><msub><mrow><mi>φ</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>)</mo></math></span>-modules parametrised by affinoid algebras in the sense of Tate. For technical reasons we work over a field <em>K</em> containing a period of the Lubin-Tate group, which allows us to describe analytic cohomology in terms of an explicit generalised Herr complex.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001069/pdfft?md5=5b405688ee583a7ed6173f26b09c8258&pid=1-s2.0-S0022314X24001069-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了以塔特意义上的affinoid代数为参数的L-解析(φL,ΓL)-模块族的解析同调的有限性和基变化性质。由于技术原因,我们在包含卢宾-塔特群周期的域 K 上进行研究,这使得我们可以用明确的广义赫尔复数来描述解析同调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Finiteness of analytic cohomology of Lubin-Tate (φL,ΓL)-modules

We prove finiteness and base change properties for analytic cohomology of families of L-analytic (φL,ΓL)-modules parametrised by affinoid algebras in the sense of Tate. For technical reasons we work over a field K containing a period of the Lubin-Tate group, which allows us to describe analytic cohomology in terms of an explicit generalised Herr complex.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信