{"title":"卢宾-塔特 (φ,Γ )- 模块的解析同调的有限性","authors":"Rustam Steingart","doi":"10.1016/j.jnt.2024.04.008","DOIUrl":null,"url":null,"abstract":"<div><p>We prove finiteness and base change properties for analytic cohomology of families of <em>L</em>-analytic <span><math><mo>(</mo><msub><mrow><mi>φ</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>)</mo></math></span>-modules parametrised by affinoid algebras in the sense of Tate. For technical reasons we work over a field <em>K</em> containing a period of the Lubin-Tate group, which allows us to describe analytic cohomology in terms of an explicit generalised Herr complex.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001069/pdfft?md5=5b405688ee583a7ed6173f26b09c8258&pid=1-s2.0-S0022314X24001069-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Finiteness of analytic cohomology of Lubin-Tate (φL,ΓL)-modules\",\"authors\":\"Rustam Steingart\",\"doi\":\"10.1016/j.jnt.2024.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove finiteness and base change properties for analytic cohomology of families of <em>L</em>-analytic <span><math><mo>(</mo><msub><mrow><mi>φ</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>)</mo></math></span>-modules parametrised by affinoid algebras in the sense of Tate. For technical reasons we work over a field <em>K</em> containing a period of the Lubin-Tate group, which allows us to describe analytic cohomology in terms of an explicit generalised Herr complex.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001069/pdfft?md5=5b405688ee583a7ed6173f26b09c8258&pid=1-s2.0-S0022314X24001069-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了以塔特意义上的affinoid代数为参数的L-解析(φL,ΓL)-模块族的解析同调的有限性和基变化性质。由于技术原因,我们在包含卢宾-塔特群周期的域 K 上进行研究,这使得我们可以用明确的广义赫尔复数来描述解析同调。
Finiteness of analytic cohomology of Lubin-Tate (φL,ΓL)-modules
We prove finiteness and base change properties for analytic cohomology of families of L-analytic -modules parametrised by affinoid algebras in the sense of Tate. For technical reasons we work over a field K containing a period of the Lubin-Tate group, which allows us to describe analytic cohomology in terms of an explicit generalised Herr complex.