L. Kelley, R.C. Delapp, A.C. Garrabrants, D.S. Kosson
{"title":"评估最大限度减少浸出试验洗脱液中汞损失的条件","authors":"L. Kelley, R.C. Delapp, A.C. Garrabrants, D.S. Kosson","doi":"10.1016/j.talo.2024.100326","DOIUrl":null,"url":null,"abstract":"<div><p>A series of experiments are described that provide recommendations of modifications to leaching test specifications to minimize losses of mercury from eluates during leaching tests and management of analytical samples. EPA methods of the Leaching Environmental Assessment Framework (LEAF) were used as a reference point for what steps are most likely to see losses, including filtration, storage of unpreserved mercury contaminated material, and materials of construction for vessels. The potential sorption of mercury to borosilicate glass and PTFE lab materials was tested to determine what materials are suitable to replace HDPE and polypropylene. The experimental findings indicate that bottles constructed of PTFE and Type I (borosilicate) glass are recommended as extraction and containment vessels for mercury-containing liquids. Type I syringe filtration of aqueous mercury samples at pH 2 through 9 through 0.45 µm PTFE filters housed in polypropylene is acceptable; however, sorption losses were observed to occur at pH > 9. Storage of unpreserved liquids containing mercury over extended leaching test intervals did not lead to significant losses of mercury when coupled with minimized headspace. All mercury-containing eluates should include preservation with Optima HNO<sub>3</sub> to a 1 % concentration and gold (III) standard to a concentration of 200 µg/L, followed by refrigeration at <6 °C prior to analysis.</p></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"9 ","pages":"Article 100326"},"PeriodicalIF":4.1000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666831924000407/pdfft?md5=9a0820aa87035bef9f0575f7a8ca9acb&pid=1-s2.0-S2666831924000407-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Evaluation of conditions to minimize mercury losses from leaching test eluates\",\"authors\":\"L. Kelley, R.C. Delapp, A.C. Garrabrants, D.S. Kosson\",\"doi\":\"10.1016/j.talo.2024.100326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A series of experiments are described that provide recommendations of modifications to leaching test specifications to minimize losses of mercury from eluates during leaching tests and management of analytical samples. EPA methods of the Leaching Environmental Assessment Framework (LEAF) were used as a reference point for what steps are most likely to see losses, including filtration, storage of unpreserved mercury contaminated material, and materials of construction for vessels. The potential sorption of mercury to borosilicate glass and PTFE lab materials was tested to determine what materials are suitable to replace HDPE and polypropylene. The experimental findings indicate that bottles constructed of PTFE and Type I (borosilicate) glass are recommended as extraction and containment vessels for mercury-containing liquids. Type I syringe filtration of aqueous mercury samples at pH 2 through 9 through 0.45 µm PTFE filters housed in polypropylene is acceptable; however, sorption losses were observed to occur at pH > 9. Storage of unpreserved liquids containing mercury over extended leaching test intervals did not lead to significant losses of mercury when coupled with minimized headspace. All mercury-containing eluates should include preservation with Optima HNO<sub>3</sub> to a 1 % concentration and gold (III) standard to a concentration of 200 µg/L, followed by refrigeration at <6 °C prior to analysis.</p></div>\",\"PeriodicalId\":436,\"journal\":{\"name\":\"Talanta Open\",\"volume\":\"9 \",\"pages\":\"Article 100326\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666831924000407/pdfft?md5=9a0820aa87035bef9f0575f7a8ca9acb&pid=1-s2.0-S2666831924000407-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666831924000407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666831924000407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Evaluation of conditions to minimize mercury losses from leaching test eluates
A series of experiments are described that provide recommendations of modifications to leaching test specifications to minimize losses of mercury from eluates during leaching tests and management of analytical samples. EPA methods of the Leaching Environmental Assessment Framework (LEAF) were used as a reference point for what steps are most likely to see losses, including filtration, storage of unpreserved mercury contaminated material, and materials of construction for vessels. The potential sorption of mercury to borosilicate glass and PTFE lab materials was tested to determine what materials are suitable to replace HDPE and polypropylene. The experimental findings indicate that bottles constructed of PTFE and Type I (borosilicate) glass are recommended as extraction and containment vessels for mercury-containing liquids. Type I syringe filtration of aqueous mercury samples at pH 2 through 9 through 0.45 µm PTFE filters housed in polypropylene is acceptable; however, sorption losses were observed to occur at pH > 9. Storage of unpreserved liquids containing mercury over extended leaching test intervals did not lead to significant losses of mercury when coupled with minimized headspace. All mercury-containing eluates should include preservation with Optima HNO3 to a 1 % concentration and gold (III) standard to a concentration of 200 µg/L, followed by refrigeration at <6 °C prior to analysis.