Jewoo Choi , Byung Wook In , Taehoon Hong , Dong-Eun Lee , Tongjun Cho , Hyo Seon Park
{"title":"夹层复合局部共振超材料嵌入板结构中的低频振动和噪声控制","authors":"Jewoo Choi , Byung Wook In , Taehoon Hong , Dong-Eun Lee , Tongjun Cho , Hyo Seon Park","doi":"10.1016/j.dibe.2024.100457","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes a sandwiched composite locally resonant metamaterial (SLRM) system and SLRM-embedded plate structure (SLRMeP) to effectively control low-frequency vibrations and sound radiation. The wave control mechanism and configuration of the proposed system are more suitable and realistic to address practical low-frequency vibro-acoustic problems. A numerical model was proposed based on the material properties, unit dimensions, and mass ratios to determine the local resonance characteristics and bandgap formation. The experimental results on a full-scale SLRMeP measuring 3000 × 4200 × 210 mm confirmed the efficacy of the local resonance bandgap for controlling vibrations and sound radiation, achieving a 94.08% reduction in the acceleration response and a 15.13 dB reduction in the sound pressure level. Additionally, variations in mass ratio, achieved by altering the mass density or dimensions, yield distinct bandgap behaviors, offering strategies to enhance vibro-acoustic performance.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924001388/pdfft?md5=7692a4a3cdcbba8a523bd5abfe7e91d3&pid=1-s2.0-S2666165924001388-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Low-frequency vibration and noise control in sandwiched composite locally resonant metamaterials-embedded plate structures\",\"authors\":\"Jewoo Choi , Byung Wook In , Taehoon Hong , Dong-Eun Lee , Tongjun Cho , Hyo Seon Park\",\"doi\":\"10.1016/j.dibe.2024.100457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study proposes a sandwiched composite locally resonant metamaterial (SLRM) system and SLRM-embedded plate structure (SLRMeP) to effectively control low-frequency vibrations and sound radiation. The wave control mechanism and configuration of the proposed system are more suitable and realistic to address practical low-frequency vibro-acoustic problems. A numerical model was proposed based on the material properties, unit dimensions, and mass ratios to determine the local resonance characteristics and bandgap formation. The experimental results on a full-scale SLRMeP measuring 3000 × 4200 × 210 mm confirmed the efficacy of the local resonance bandgap for controlling vibrations and sound radiation, achieving a 94.08% reduction in the acceleration response and a 15.13 dB reduction in the sound pressure level. Additionally, variations in mass ratio, achieved by altering the mass density or dimensions, yield distinct bandgap behaviors, offering strategies to enhance vibro-acoustic performance.</p></div>\",\"PeriodicalId\":34137,\"journal\":{\"name\":\"Developments in the Built Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666165924001388/pdfft?md5=7692a4a3cdcbba8a523bd5abfe7e91d3&pid=1-s2.0-S2666165924001388-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developments in the Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666165924001388\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165924001388","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Low-frequency vibration and noise control in sandwiched composite locally resonant metamaterials-embedded plate structures
This study proposes a sandwiched composite locally resonant metamaterial (SLRM) system and SLRM-embedded plate structure (SLRMeP) to effectively control low-frequency vibrations and sound radiation. The wave control mechanism and configuration of the proposed system are more suitable and realistic to address practical low-frequency vibro-acoustic problems. A numerical model was proposed based on the material properties, unit dimensions, and mass ratios to determine the local resonance characteristics and bandgap formation. The experimental results on a full-scale SLRMeP measuring 3000 × 4200 × 210 mm confirmed the efficacy of the local resonance bandgap for controlling vibrations and sound radiation, achieving a 94.08% reduction in the acceleration response and a 15.13 dB reduction in the sound pressure level. Additionally, variations in mass ratio, achieved by altering the mass density or dimensions, yield distinct bandgap behaviors, offering strategies to enhance vibro-acoustic performance.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.