地球形成碰撞过程中金属碎裂的条件

IF 2.4 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Augustin Maller , Maylis Landeau , Laetitia Allibert , Sébastien Charnoz
{"title":"地球形成碰撞过程中金属碎裂的条件","authors":"Augustin Maller ,&nbsp;Maylis Landeau ,&nbsp;Laetitia Allibert ,&nbsp;Sébastien Charnoz","doi":"10.1016/j.pepi.2024.107199","DOIUrl":null,"url":null,"abstract":"<div><p>The long-term evolution of the deep Earth depends on its initial temperature and composition. These were set by the large planetary collisions that formed the Earth. After each collision, the metallic core of the impactor fell into a molten silicate magma ocean. Previous investigations showed that, as it sank, the impactor core fragmented into drops. The overall fragmentation of the core controlled the efficiency of chemical transfers between the impactor metal and the magma ocean, and, as a consequence, the composition of the Earth's core and mantle. However, because previous studies lack an impact stage, it is unclear whether the projectile core fragmented during the impact at Earth's surface, or deeper in the magma ocean.</p><p>To answer this question, we conduct laboratory experiments modeling the collision of single-phase and two-phase impactors. In a first series of experiments, we investigate the impact of a single-phase centimetric liquid volume, representing the impactor core, onto a lighter immiscible liquid, representing the magma ocean. Our experiments approach the dynamical regime of planetary collisions for which inertia is large compared to surface tension. Varying the velocity and size of the impactor, we determine the conditions under which the impactor fragments into drops. We find that fragmentation occurs when the Froude number, which measures the relative importance of inertia to gravity, is larger than 40, regardless of surface tension. This fragmentation results from the growth of a turbulent Rayleigh-Taylor instability at the interface between the impacting liquid and the target pool. In contrast, when <span><math><mi>Fr</mi><mo>&lt;</mo><mn>10</mn></math></span>, the impactor remains coherent. In a second series of experiments, we use two-phase impactors to show that these results hold for impactors that are differentiated into a core and a mantle.</p><p>Applied to planet formation, our results suggest that the core of impactors less than 330 km in radius impacting at the escape velocity onto an Earth-sized planet fully fragments into droplets during the impact process, whereas the core of a giant Mars-sized impactor remains coherent. We derive a model for the depth at which the impactor core fragments in the magma ocean as a function of the impactor size and velocity. This model predicts that impactors with a radius less than 800 km fully fragment before reaching the bottom of the magma ocean. For velocities higher than twice the escape speed, some degree of fragmentation is unavoidable for any impactor size.</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"352 ","pages":"Article 107199"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Condition for metal fragmentation during Earth-forming collisions\",\"authors\":\"Augustin Maller ,&nbsp;Maylis Landeau ,&nbsp;Laetitia Allibert ,&nbsp;Sébastien Charnoz\",\"doi\":\"10.1016/j.pepi.2024.107199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The long-term evolution of the deep Earth depends on its initial temperature and composition. These were set by the large planetary collisions that formed the Earth. After each collision, the metallic core of the impactor fell into a molten silicate magma ocean. Previous investigations showed that, as it sank, the impactor core fragmented into drops. The overall fragmentation of the core controlled the efficiency of chemical transfers between the impactor metal and the magma ocean, and, as a consequence, the composition of the Earth's core and mantle. However, because previous studies lack an impact stage, it is unclear whether the projectile core fragmented during the impact at Earth's surface, or deeper in the magma ocean.</p><p>To answer this question, we conduct laboratory experiments modeling the collision of single-phase and two-phase impactors. In a first series of experiments, we investigate the impact of a single-phase centimetric liquid volume, representing the impactor core, onto a lighter immiscible liquid, representing the magma ocean. Our experiments approach the dynamical regime of planetary collisions for which inertia is large compared to surface tension. Varying the velocity and size of the impactor, we determine the conditions under which the impactor fragments into drops. We find that fragmentation occurs when the Froude number, which measures the relative importance of inertia to gravity, is larger than 40, regardless of surface tension. This fragmentation results from the growth of a turbulent Rayleigh-Taylor instability at the interface between the impacting liquid and the target pool. In contrast, when <span><math><mi>Fr</mi><mo>&lt;</mo><mn>10</mn></math></span>, the impactor remains coherent. In a second series of experiments, we use two-phase impactors to show that these results hold for impactors that are differentiated into a core and a mantle.</p><p>Applied to planet formation, our results suggest that the core of impactors less than 330 km in radius impacting at the escape velocity onto an Earth-sized planet fully fragments into droplets during the impact process, whereas the core of a giant Mars-sized impactor remains coherent. We derive a model for the depth at which the impactor core fragments in the magma ocean as a function of the impactor size and velocity. This model predicts that impactors with a radius less than 800 km fully fragment before reaching the bottom of the magma ocean. For velocities higher than twice the escape speed, some degree of fragmentation is unavoidable for any impactor size.</p></div>\",\"PeriodicalId\":54614,\"journal\":{\"name\":\"Physics of the Earth and Planetary Interiors\",\"volume\":\"352 \",\"pages\":\"Article 107199\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Earth and Planetary Interiors\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031920124000578\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Earth and Planetary Interiors","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031920124000578","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

地球深处的长期演变取决于其初始温度和成分。这些都是由形成地球的大型行星碰撞所决定的。每次碰撞后,撞击器的金属内核都会坠入熔融的硅酸盐岩浆海洋。先前的研究表明,在下沉的过程中,撞击器的内核碎裂成小液滴。内核的整体碎裂控制着撞击器金属和岩浆海洋之间的化学转移效率,并因此控制着地核和地幔的成分。然而,由于之前的研究缺乏撞击阶段,因此尚不清楚抛射体核心是在地球表面的撞击过程中碎裂,还是在岩浆海洋更深处的撞击过程中碎裂。为了回答这个问题,我们进行了模拟单相和双相撞击物碰撞的实验室实验。在第一个系列的实验中,我们研究了代表撞击器内核的单相厘米液体体积对代表岩浆海洋的较轻不溶性液体的撞击。我们的实验接近行星碰撞的动力学状态,在这种状态下,惯性比表面张力大。通过改变撞击器的速度和大小,我们确定了撞击器碎裂成液滴的条件。我们发现,当衡量惯性与重力相对重要性的弗劳德数大于 40 时,无论表面张力如何,都会发生碎裂。这种碎裂是由于撞击液体和目标池之间的界面上出现了湍流雷利-泰勒不稳定性。相反,当 Fr<10 时,撞击器保持连贯。在第二系列实验中,我们使用两相撞击器来证明这些结果适用于分化为内核和地幔的撞击器。我们的结果应用于行星的形成,表明半径小于330千米的撞击器以逃逸速度撞击地球大小的行星时,其内核在撞击过程中完全碎裂成液滴,而火星大小的巨型撞击器的内核则保持连贯。我们推导出了一个关于撞击器核心在岩浆海洋中碎裂深度的模型,它是撞击器大小和速度的函数。该模型预测,半径小于800千米的撞击器在到达岩浆洋底部之前就会完全碎裂。当速度高于逃逸速度的两倍时,任何大小的撞击器都不可避免地会发生一定程度的碎裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Condition for metal fragmentation during Earth-forming collisions

Condition for metal fragmentation during Earth-forming collisions

Condition for metal fragmentation during Earth-forming collisions

The long-term evolution of the deep Earth depends on its initial temperature and composition. These were set by the large planetary collisions that formed the Earth. After each collision, the metallic core of the impactor fell into a molten silicate magma ocean. Previous investigations showed that, as it sank, the impactor core fragmented into drops. The overall fragmentation of the core controlled the efficiency of chemical transfers between the impactor metal and the magma ocean, and, as a consequence, the composition of the Earth's core and mantle. However, because previous studies lack an impact stage, it is unclear whether the projectile core fragmented during the impact at Earth's surface, or deeper in the magma ocean.

To answer this question, we conduct laboratory experiments modeling the collision of single-phase and two-phase impactors. In a first series of experiments, we investigate the impact of a single-phase centimetric liquid volume, representing the impactor core, onto a lighter immiscible liquid, representing the magma ocean. Our experiments approach the dynamical regime of planetary collisions for which inertia is large compared to surface tension. Varying the velocity and size of the impactor, we determine the conditions under which the impactor fragments into drops. We find that fragmentation occurs when the Froude number, which measures the relative importance of inertia to gravity, is larger than 40, regardless of surface tension. This fragmentation results from the growth of a turbulent Rayleigh-Taylor instability at the interface between the impacting liquid and the target pool. In contrast, when Fr<10, the impactor remains coherent. In a second series of experiments, we use two-phase impactors to show that these results hold for impactors that are differentiated into a core and a mantle.

Applied to planet formation, our results suggest that the core of impactors less than 330 km in radius impacting at the escape velocity onto an Earth-sized planet fully fragments into droplets during the impact process, whereas the core of a giant Mars-sized impactor remains coherent. We derive a model for the depth at which the impactor core fragments in the magma ocean as a function of the impactor size and velocity. This model predicts that impactors with a radius less than 800 km fully fragment before reaching the bottom of the magma ocean. For velocities higher than twice the escape speed, some degree of fragmentation is unavoidable for any impactor size.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of the Earth and Planetary Interiors
Physics of the Earth and Planetary Interiors 地学天文-地球化学与地球物理
CiteScore
5.00
自引率
4.30%
发文量
78
审稿时长
18.5 weeks
期刊介绍: Launched in 1968 to fill the need for an international journal in the field of planetary physics, geodesy and geophysics, Physics of the Earth and Planetary Interiors has now grown to become important reading matter for all geophysicists. It is the only journal to be entirely devoted to the physical and chemical processes of planetary interiors. Original research papers, review articles, short communications and book reviews are all published on a regular basis; and from time to time special issues of the journal are devoted to the publication of the proceedings of symposia and congresses which the editors feel will be of particular interest to the reader.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信