{"title":"二次ε-CNS 多项式的特征","authors":"Borka Jadrijević , Kristina Miletić","doi":"10.1016/j.jnt.2024.04.007","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we give characterization of quadratic <em>ε</em>-canonical number system (<em>ε</em>−CNS) polynomials for all values <span><math><mi>ε</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Our characterization provides a unified view of the well-known characterizations of the classical quadratic CNS polynomials (<span><math><mi>ε</mi><mo>=</mo><mn>0</mn></math></span>) and quadratic SCNS polynomials (<span><math><mi>ε</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>). This result is a consequence of our new characterization results of <em>ε</em>-shift radix systems (<em>ε</em>−SRS) in the two-dimensional case and their relation to quadratic <em>ε</em>−CNS polynomials.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"262 ","pages":"Pages 579-606"},"PeriodicalIF":0.6000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of quadratic ε−CNS polynomials\",\"authors\":\"Borka Jadrijević , Kristina Miletić\",\"doi\":\"10.1016/j.jnt.2024.04.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we give characterization of quadratic <em>ε</em>-canonical number system (<em>ε</em>−CNS) polynomials for all values <span><math><mi>ε</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Our characterization provides a unified view of the well-known characterizations of the classical quadratic CNS polynomials (<span><math><mi>ε</mi><mo>=</mo><mn>0</mn></math></span>) and quadratic SCNS polynomials (<span><math><mi>ε</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>). This result is a consequence of our new characterization results of <em>ε</em>-shift radix systems (<em>ε</em>−SRS) in the two-dimensional case and their relation to quadratic <em>ε</em>−CNS polynomials.</p></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"262 \",\"pages\":\"Pages 579-606\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001057\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001057","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we give characterization of quadratic ε-canonical number system (ε−CNS) polynomials for all values . Our characterization provides a unified view of the well-known characterizations of the classical quadratic CNS polynomials () and quadratic SCNS polynomials (). This result is a consequence of our new characterization results of ε-shift radix systems (ε−SRS) in the two-dimensional case and their relation to quadratic ε−CNS polynomials.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.