{"title":"学习移动网络的时空动态,以适应开放世界事件","authors":"","doi":"10.1016/j.artint.2024.104120","DOIUrl":null,"url":null,"abstract":"<div><p>As a decisive part in the success of Mobility-as-a-Service (MaaS), spatio-temporal dynamics modeling on mobility networks is a challenging task particularly considering scenarios where open-world events drive mobility behavior deviated from the routines. While tremendous progress has been made to model high-level spatio-temporal regularities with deep learning, most, if not all of the existing methods are neither aware of the dynamic interactions among multiple transport modes on mobility networks, nor adaptive to unprecedented volatility brought by potential open-world events. In this paper, we are therefore motivated to improve the canonical spatio-temporal network (ST-Net) from two perspectives: (1) design a heterogeneous mobility information network (HMIN) to explicitly represent intermodality in multimodal mobility; (2) propose a memory-augmented dynamic filter generator (MDFG) to generate sequence-specific parameters in an on-the-fly fashion for various scenarios. The enhanced <u>e</u>vent-<u>a</u>ware <u>s</u>patio-<u>t</u>emporal <u>net</u>work, namely <strong>EAST-Net</strong>, is evaluated on several real-world datasets with a wide variety and coverage of open-world events. Both quantitative and qualitative experimental results verify the superiority of our approach compared with the state-of-the-art baselines. What is more, experiments show generalization ability of EAST-Net to perform zero-shot inference over different open-world events that have not been seen.</p></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"335 ","pages":"Article 104120"},"PeriodicalIF":5.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning spatio-temporal dynamics on mobility networks for adaptation to open-world events\",\"authors\":\"\",\"doi\":\"10.1016/j.artint.2024.104120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a decisive part in the success of Mobility-as-a-Service (MaaS), spatio-temporal dynamics modeling on mobility networks is a challenging task particularly considering scenarios where open-world events drive mobility behavior deviated from the routines. While tremendous progress has been made to model high-level spatio-temporal regularities with deep learning, most, if not all of the existing methods are neither aware of the dynamic interactions among multiple transport modes on mobility networks, nor adaptive to unprecedented volatility brought by potential open-world events. In this paper, we are therefore motivated to improve the canonical spatio-temporal network (ST-Net) from two perspectives: (1) design a heterogeneous mobility information network (HMIN) to explicitly represent intermodality in multimodal mobility; (2) propose a memory-augmented dynamic filter generator (MDFG) to generate sequence-specific parameters in an on-the-fly fashion for various scenarios. The enhanced <u>e</u>vent-<u>a</u>ware <u>s</u>patio-<u>t</u>emporal <u>net</u>work, namely <strong>EAST-Net</strong>, is evaluated on several real-world datasets with a wide variety and coverage of open-world events. Both quantitative and qualitative experimental results verify the superiority of our approach compared with the state-of-the-art baselines. What is more, experiments show generalization ability of EAST-Net to perform zero-shot inference over different open-world events that have not been seen.</p></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"335 \",\"pages\":\"Article 104120\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370224000560\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224000560","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Learning spatio-temporal dynamics on mobility networks for adaptation to open-world events
As a decisive part in the success of Mobility-as-a-Service (MaaS), spatio-temporal dynamics modeling on mobility networks is a challenging task particularly considering scenarios where open-world events drive mobility behavior deviated from the routines. While tremendous progress has been made to model high-level spatio-temporal regularities with deep learning, most, if not all of the existing methods are neither aware of the dynamic interactions among multiple transport modes on mobility networks, nor adaptive to unprecedented volatility brought by potential open-world events. In this paper, we are therefore motivated to improve the canonical spatio-temporal network (ST-Net) from two perspectives: (1) design a heterogeneous mobility information network (HMIN) to explicitly represent intermodality in multimodal mobility; (2) propose a memory-augmented dynamic filter generator (MDFG) to generate sequence-specific parameters in an on-the-fly fashion for various scenarios. The enhanced event-aware spatio-temporal network, namely EAST-Net, is evaluated on several real-world datasets with a wide variety and coverage of open-world events. Both quantitative and qualitative experimental results verify the superiority of our approach compared with the state-of-the-art baselines. What is more, experiments show generalization ability of EAST-Net to perform zero-shot inference over different open-world events that have not been seen.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.